说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 切线支距坐标
1)  Tangent offset coordinate
切线支距坐标
2)  tangential coordinates
切线坐标
1.
A differential orbit equation of the material point acted on by the central force is discussed with tangential coordinates,the orbit of motion of a planet has been solved with the equation,and the tangential coordinate equation of a dynamical parameter is also given.
利用切线坐标讨论了质点在有心力作用下的轨道微分方程 ,并用该方程对行星的运动轨道进行了研究 ,同时导出了动力参数的切线坐标方
3)  tangent offset
切线支距
1.
Based on practical field expericnces, this paper discusses the indirect determination method of the length of rails in joint areas and the computation of the length of the rail at a track bond,by the use of the principle of tangent offset.
根据现场实践经验,利用切线支距法原理,探讨拨接口区域线路钢轨长度的间接测定方法及龙口轨长度的计算方法。
4)  Tangent line coordinate system
切线坐标系
5)  tangential polar coordinate
切线极坐标
1.
Applications of tangential polar coordinates in instrument gear research;
切线极坐标在仪表齿形研究中的应用
6)  tangent offset method
切线支距法
1.
The setting of road shape instruction along highway in mountain area was discussed using tangent offset method in road survey.
运用公路测量学上的切线支距法对线形诱导标在山区高速公路的设置进行了探讨。
2.
By combining with example of the construction line-putting of Xiqu Fen river Bridge in Gujiao city,the paper introduces two kinds of curve coordinate calculation method,that is tangent offset method and the center declination method,according to comparison analysis and chooses a new method,center declination method which is easier to operate than the tangent offset method and makes less mistakes.
结合古交市西曲汾河大桥施工放线的实例,介绍了两种曲线坐标计算方法,即切线支距法和圆心偏角法,通过对比分析,选出一种比切线支距法更简捷和不容易出错的计算坐标的新方法——圆心偏角法。
补充资料:切线


切线
tangent line

  切线[加叼械伽;搜aTe侧四],曲线的 一条表示割线的极限位置的直线.设M是曲线L上一点(图l),M,为曲线L上另外一点,MM,为连接M与M,的一条直线.固定点M,让M,沿着曲线L接近M.如果当M.趋向于M时,直线MM,趋向于极限直线MT,则称MT为L在M处的切线(切咫即t).人。爪 图l图2 并非每条连续曲线都有切线.当M:从M点的不同侧趋于M时,MM,不是总会趋于一个极限位置的,或者它可能趋于两个不同的极限位置(图2).若在带有直角坐标的平面中一条曲线由方程夕“f(x)所确定,且f在x。点可微,则在M处的切线的斜率等于在该点x。的导数值f’(x。);在该点的切线方程具有形式 y一f(x。)“f‘(x。)(x一x。). 空间曲线r=r(O的切线方程为 ‘一十、贵,一二<*<十。. 曲面S在点M处的切线是指通过点M的,且位于S在点M的切面(t缸增翎tp场ne)上的直线 FC〕_飞
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条