1) Li-Yorke algorithms
Li-Yorke算法
1.
According to extreme conditions of optimization problems,the paper uses Li-Yorke algorithms based on homotopy continuation method to solve nonlinear equations of 3D rectangular coordinate transformation.
直接从三维直角坐标转换的非线性方程出发,根据最优化问题的极值条件,采用基于同伦连续思想的Li-Yorke算法进行求解。
2) Li-Yorke chaos
Li-Yorke混沌
1.
We get the following results: (1) the subsystems from nonsingular substitutions of constant length are not Li-Yorke chaos; (2) the sub systems from singular substitutions of constant length axe Li-Yorke chaos.
通过分类研究,我们得到:(1)非奇异代换系统不是Li-Yorke混沌的,作为特例,Morse极小系统不是混沌的;(2)奇异代换子系统都是Li-Yorke混沌的。
2.
Here we discuss the relationship between positive topological entropy and Li-Yorke chaos,Schweizer-Smital chaos and modified Devaney chaos.
研究了正拓扑熵与Li-Yorke混沌、Schweizer-Smital混沌、修改的Devaney混沌之间的关系,对于混沌的研究者有重要的参考价值。
3.
This phenomena is currently well known under the name of Li-Yorke chaos.
本文主要包括正规算子,次正规算子及μ+紧的混沌性质,并且刻画了DC(H)及LY(H)的内点(其中DC(H)及LY(H)分别为可分Hilbert空间H上的全体分布混沌的算子和全体Li-Yorke混沌的算子)。
3) Li-Yorke sensitivity
Li-Yorke敏感
1.
By means of construction,we find a concise example in maps on interval which is space-time chaotic but not Li-Yorke sensitive,which proves that space-time chaos doesn t imply Li-Yorke sensitivity on interval.
运用构造的方法,在区间映射中找到了一个简洁明了的时空混沌而不是Li-Yorke敏感的例子,从而证明了在区间上时空混沌不蕴涵Li-Yorke敏感。
4) Li-Yorke pair
Li-Yorke对
5) Li-Yorke chaos set
Li-Yorke混沌集
1.
Li-Yorke chaos set in generalized symbolic dynamical system;
广义符号动力系统上的Li-Yorke混沌集
6) Li-Openshaw algorithm
Li-Openshaw算法
1.
Li-Openshaw algorithm is a self-adapted linear feature s generalization algorithm based on impersonality generalized natural law,and using this algorithm can get reasonable and genuine generalization results.
Li-Openshaw算法是一种基于客观综合自然规律的自适应线状要素综合算法,使用该算法可得到较合理真实的综合结果。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条