说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 仿拓扑群
1)  Paratopological groups
仿拓扑群
2)  pseudo-sober space
仿sober拓扑
3)  fuzzy topological group
Fuzzy拓扑群
1.
In this paper we forthermore study fuzzy topological groups and discuss the relation between open fuzzy set and closed fuzzy set of fuzzy topological groups.
在讨论了Fuzzy拓扑群的一些性质,提出Fuzzy拓扑群下相对闭集的概念之后,笔者继续开展了这方面的工作,得出一个Fuzzy开集和任意一个Fuzzy子集的乘积均为Fuzzy开集等一些结果,并提出Fuzzy群的一种分类方法——Fuzzy群分类定理。
4)  QF-Topological Group
QF-拓扑群
1.
This paper defines a Q-cut set and Q-compactness,has studied some properties of Q-cut set and Q-compactness,making the method of repeated-region get extensive application in QF-topological group.
文献[3]提出了QF-拓扑群的概念,在文献[3]的基础上对QF-拓扑群进行了进一步的研究。
5)  topological semigroup
拓扑半群
1.
The paper deals with the condition composition convergence and shift composition convergence of probability measures sequence on topological semigroups by the method of partial groupization.
本文用部分群化的方法,研究拓扑半群上概率测度的条件组合收敛性与SHIFT组合收敛性,得到了一些充分条件,并推广了一些组合收敛性结果。
2.
Let S be a locally compact second countable Hausdorff topological semigroup.
设 S是局部紧第二可数 Hausdorff拓扑半群 ,μ∈ P( S)是 S上的概率测度 ,本文利用不变测度证明了卷积幂序列{μn}的一个强极限定理。
6)  topological group
拓扑群
1.
Employing group and homomorphism to research this relation and reveal algebraic character of uniform space and discussing the relation between topological group and uniformity and providing some conditions for further study.
一致空间作为介于拓扑空间与度量空间之间的一类空间 ,它与拓扑空间和度量空间有着密切的联系 ,从群这个侧面去研究了一致空间的代数特征 ,在一致结构上建立了群结构 ,讨论了它与一致空间和拓扑群的联系 ,即当拓扑中有群结构时 ,便可产生一致结构 ,并给出了一致空间的同态定理 ,这为进一步探讨拓扑空间以及度量空间的关系和结构创造了一定的条
2.
It is proved that a power group on a merizable topological group is metrizable and the way to define a measure on a topological group is described.
证明了可度量化的拓扑群上的幂群是可度量化的,并且具体地给出了在超拓扑群上规定度量的方
3.
A topology on a powergroup on a topological group is given such that the powergroup with the topology is formed a topological group.
在拓扑群上的幂群中规定了一种拓扑,使之亦成为拓扑群,称之为超拓扑群,这是拓扑群的一种提升方式。
补充资料:拓扑结构(拓扑)


拓扑结构(拓扑)
topologies 1 structure (topology)

拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条