1) Sharp maximal functions
尖锐极大函数
2) keeness function
尖锐函数
3) self-correlation function sharp peak value
自相关函数的尖锐峰值
4) maximal function
极大函数
1.
The weighted Sharp function and the weighted maximal function on Orlicz space;
Orlicz空间中带权的Sharp函数和极大函数
2.
When the integrability of the gradients of the solutions is lower than that of the reference equations,the former can be improved approximately to the level of the corresponding linear equations by combining the properties of maximal functions with Caldern-Zygmund decomposition theorem.
当原方程弱解梯度的可积性比参考方程弱解梯度的可积性弱的时候,结合极大函数的性质以及Calder n-Zygmund分解定理,将原方程弱解梯度的可积性提高到与参考方程相近的阶数。
3.
Using exponential bounds of the probabilities of the type P(|f n|>λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for the L p-norms of the maximal functions of martinglaes.
设 2 ≤ p<∞ ,(fn)是一个鞅 ,利用P(|fn|>λ‖T(fn)‖∞)型的概率指数界 ,其中 ,T是作用在鞅上的拟线性算子 ,本文估计了鞅的极大函数的Lp_范数的上界。
6) sharp-pointed
极尖锐的<火>
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条