1) creditable subspace
可信子空间
1.
This paper first gave the definition of creditable subspace based on D-S evidence,and then proposed a greedy algorithm CSL(creditable subspace labeling)which could search all the creditable subspaces.
在D-S证据理论的基础上,给出了可信子空间的定义及能够发现所有可信子空间的贪心算法CSL(creditable subspace labeling)。
2) faith degree set
可信度空间
1.
Based on the axiomatic definition of faith degree and faith degree set, some properties of faith degree are derived in this paPer.
本文在可信度和可信度空间公理化定义的基础上,推导出了一些关于可信度的性质,为进一步探讨可信度空间奠定了基础。
3) separable subspace
可分子空间
1.
Using the ultrapowers as an implement, the mutual reflection of the properties of Banach spaces and its separable subspaces is discussed.
利用超幂这一工具讨论了 Banach 空间上的一些性质与其可分子空间上性质的相互体现,给出了超自反空间的一个等价命题。
4) estimable subspace
可估子空间
1.
For two growth curve models g1 = G (X1BZ1, V1, In1 ) and g2 = G(X2BZ2, V2,In2 ), where V1 and V2 are known symmetric nonnegative definite matrices, we mfore a com-parison between them in estimable subspace D and obtain several necessary and sufficientconditions of g1 g2(D).
对于两个生长曲线模型g1=G(X1BZ1,V1,In1)和g2=G(X2BZ2,V2,In2),其中V1和V2是已知的对称非负定矩阵,本文在可估子空间D上对它们进行了比较,得到了g1 g2(D)的几个充要条件。
2.
For two linear models d1= L(X1β, V1) and d2=L(X2β, V2), where V1 and V2are known symmetric nonnegative definite matrices, we make a comparison between them in estimable subspace μ(A) and obtain a necessary and sufficient condition of d1 d2 (μ(A)).
对于两个线性模型d1=L(X1β,V1)和d2=L(X2β,V2),其中V1和V2是已知的对称非负定矩阵,我们在可估子空间μ(A)上对它们进行了比较。
5) complemented subspace
可补子空间
1.
As pointed by the author, the sum of two complemented subspaces of Banach space X may not be complemented space of X ; however, when P and Q are all continuous linear projection operators on X and PQ are strictly singular operators, PX+QX are complemented.
指出Banach空间X的两个可补子空间之和未必再是X的可补子空间,但当P和Q都是X上连续线性投影算子且PQ是严格奇异算子时,PX+QX是可补的。
2.
A Banach space X with a unconditional basis {xn} is said to have the property P if, every bounded block basis sequence of {xn} spans a complemented subspace of X.
称一个带无条件基{xn}的Banach空间有性质P,如果{xn}的每一有界块基序列都张成X的可补子空间。
6) Control label sub-space
可控子空间
补充资料:可信度
可信度:指一项测试对其所测度的东西具有前后一致性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条