2) coordinate interleaved orthogonal designs
坐标交叉正交设计
3) coordinate interleaving
坐标交织
1.
In this paper,we improve the Trace-orthonormal full-diversity cyclotomic LD codes using coordinate interleaving.
用坐标交织的方法改进了满分集迹正交割圆域空时码的设计方法,经研究发现,原来的满分集满速率割圆域线性分散码(LDC)设计中,能使用的星座是受限的。
5) nonorthogonal coordinate systems
非正交坐标
1.
The nonorthogonal coordinate systems are introduced to solve the problem.
针对斜井剖分过程中采用传统的直角坐标系,矩形网格剖分地层,采用梯形近似处理斜井边界时出现的要达到精确模拟就只能缩小网格尺寸而引起计算量急剧增加这一矛盾问题,根据实际模型引入了非正交坐标系,在非正交坐标系中,存在两种基矢,它们相互之间以及与直角坐标系统之间的转化关系具备一套完整的理论体系,简化了对斜井水平地层以及直井倾斜地层等模型的模拟。
6) the orthogonal co ordinate system
正交坐标系
1.
Through solving the Laplace equations about physics co ordinate to transform plane,a numerical method of determining the grid points had been successfully used to generate the orthogonal co ordinate system.
采用物理坐标在变换平面求解拉普拉斯方程的方法生成正交坐标系 ,提出了双连通域的边界条件的处理及其数值计算过程 。
补充资料:坐标
坐标
coordinates :
的APOnonlus就已用现在所谓的坐标(这一术语是由G.Leibniz于1694年给出的)定义了二次曲线,尽管Apellonius的坐标没有数值.到了公元二世纪,Rolemy在他的《地理学》《〔沁ography)中已开始把数值坐标用于纬度和经度.14世纪,N.Oresme把坐标用于平面来构作图形,并用术语经度和纬度表示了现在所谓的横坐标和纵坐标. 避免“无中生有”地引人坐标,以保持理论的“纯悴性”,此类尝试未证明其本身的正确性(例如,由Ch.von Staudt(1847)提出的射影坐标(projective叨roii-nates)综合构造法,证明可被简单代数等价物所替代,这导致了可除环上射影几何的概念).然而,这一思想仍在继续,可称之为引人坐标的内在方法(以区别于“无中生有”强加坐标的外来方法),它基于计算目标的位置而配之以关于某些预先选择的标准子集的坐标,这种子集如曲线、曲面等(相应称坐标曲线似)叮dinate curves)、坐标曲面(~dinates、,r-fa岛),等等).这特别适用于其定义涉及数的集含(如度量空间及向量空间),并因此适用于很广泛的有实际重要性的数学对象;这说明了为什么这种方法是如此流行. 线性坐标在有关点的坐标系(点坐标(POint伽r由-nates))中具有特殊的位置.对于这种坐标,其坐标曲线是直线,比如。,国n留直角坐标系(Ca比昭助()咐K)-g川al~rdinate systeln),一二角形坐标系(见四面体坐标(tetrahedral姗rdinates)),重心坐标(bary联:n-trie姗rdinates)和射影坐标‘projective coordlnat〔5).坐标曲线不都是直线的坐标系即为曲线坐标.曲线坐标用于平面L(如极坐标(pol盯咖rdinates);椭圆坐标(elliPtie coordinates);抛物线坐标(Par:,belic姗rdinates);双极坐标( bipolar拟)rdinates))和曲面_l:(测地坐标(罗记esie coord,nates);等温坐标(1、o-the皿al coordinates)等等).人们在使用满足各种条件的曲线网时,引入了许多特殊类型的曲线坐标系,这种坐标系中最重要的一类是正交系(orthogonal sys-tem),其坐标曲线相交成直角. 平面(或曲面)上各种类型的坐标,可以推厂一到(三维)空间.例如,从平面极坐标可以产生空间极坐标的概念(球面坐标(s pheri以l姗rdinates)或柱面坐标(卿-Un山r伽rdinates));从平面双极坐标可以导出回环坐标(toroldal coordinates)、双柱面坐标(bi卿】l。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条