1) bounds functions
界限函数
2) linear bounding functions
线性界限函数
3) critical function
临界函数
1.
Taking the critical function as a judgment to change the value d0,a new initial cluster centre was gained to improve the clustering effect.
此方法用"距离试探法"来确定一个合适的d0值,以此为基础进行马氏距离测度下类的初始划分,再以临界函数作为紧致性的判断依据,修改半径d0,得到新的聚类中心,从而提高了聚类的效果。
4) bounded function
有界函数
1.
From this,it is proved that when all the ratios of a subaddtive function defined on the interval(0,+∞) to the value of its variable form a bounded function,the subaddtive function must have supremum and infimum functions,which are homogeneously linear functions.
从这一结果出发证明了,当定义在(0,+∞)上的次可加函数与其自变量之比为有界函数时,次可加函数必存在上下确界函数,并证明了其上下确界函数均为齐次线性函数。
2.
In this paper,a proof is made of the equivalence in three definitions of the integral of bounded function in finite set measure.
关于Lebesgue积分,文献有不同的定义,本文给出了测度有限集上有界函数Lebesgue积分三种不同定义的等价性的一种证明。
3.
This paper gives a concept of Lebesgue-Stieltjes measure in monotone increasing left continuous bounded function and discuss some properties.
以单调递增左连续有界函数 f 给出了 Lebesgue-Stieltjes测度的概念 ,进一步讨论了由它产生的若干相应的性
5) boundary functions
边界函数
1.
Based on the theories of 3D elasticity and piezoelectricity and by assuming appropriate boundary functions,the state equations for closed laminated piezoelectric cylindrical shells are established.
从三维弹性理论和压电学理论出发,通过假设边界函数,导出压电层合闭口柱壳的状态方程,并运用状态转移矩阵方法给出满足两端和内、外表面所有任意边界条件的精确解析解。
2.
Under appopriate assumptions by using the method of boundary functions,the existence and local uniqueness of solutions,constructions of asymptotic solutions and their uniform validity of the problem are studied and the estimation of the corresponding remainder term are given as well in the paper.
研究了一类二阶拟线性奇摄动边值问题解的存在惟一性和一致有效性,利用边界函数法,在适当条件下成功构造了所论问题解的一致有效的渐近展开式,并得到了渐近解的误差估计。
3.
Then the asymptotic solution of doubly boundary layer for the system was constructed, and the character of exponential decay for all boundary functions was proved.
当gy′>0时,首先将所论问题转化成等价的Tikhonov方程组边值问题,然后构造了它的双边界层渐近解,并证明了所有边界函数的指数式衰减特性。
6) boundary function
边界函数
1.
In this paper, at the first, continuity of dilatation function of Beurling-Ahlfors extension in the sence of the norm of boundary functionis is discussed, as an application,this paper discass the stability of dilatation function of Beurling-Ahlfors extension,when the smooth perturbation of boundary function occurs,and give the corresponding error estimate.
讨论了Beurling Ahlfors扩张的伸张函数依某种边界函数范数的连续性,应用所得到的结果,讨论了在边界函数发生光滑扰动时,Beurling Ahlfors扩张的伸张函数的稳定性问题,给出了相应的误差估计。
2.
The concept of boundary function is defined.
定义了边界函数,证明了g(x)几乎处处有界,且‖g(x)‖_∞≤8。
补充资料:函数逼近,线性方法
函数逼近,线性方法
pproximation of functions, Mnear methods
函数通近,线性方法【即pro劝ma柱佣of如口比此,Unearmethds;即面.橄...中伸叫浦月.州白.eM曰’O周曰!甲的-习..‘。侧.1由线性算子所定义的逼近方法.如果在赋范线性空间X中将线性流形(线性子空间)选作逼近集,则任何将函数f任X变换成函数U汀,t)=(Uf)(t)‘灾且满足’一U(。:f,+。2f2,r)=。IU汀,,t)+aZU价,r)(其中“1和气为任意数)的线性算子U均定义了灾中函数对X中函数的一种线性逼近方法(1i ncar approxi-mation method).一个线性逼近方法称为是射影的(P rojeCtive)如果对所有fe贝,U以t)=f(O;称为是正的(户犯itive),如果对非负函数f有U(f,r))0. 最有意思的是有限维数的情形.此时,若贝二贝、是N维子空间,则有 八 U以‘)=饰以,)=艺e*汀)叭(,),(1) k二1其中{叭(t)}犷是灾、的基底,吼为定义在X上的线性泛函.线性无关系{叭(t)}犷和泛函集{q}仁的选取依赖于构造线性方法时所用函数的有关信息.如果几们二了仇)(这里{气片是f的定义域中的固定点组玉且叭(t.卜0,(i笋k),叭(tk)=1,则U从工气)=f(t*)伍=1,…,扔,此时得到一种插值方法(interpolation method)(如,Lag-ran罗插值多项式或播值样条(interpolation spline)).如果X=H是托lbert空间,吼汀)为函数f关于标准正交系{叭(t)}的Fourier系数,则(1)的右端的和式导致了X到贝N上的正交投影线性方法(li near methodoforthogonal Projection);此时, ,,介饰汀,”一萝…卜詹:一……。因此,可用函数叭的线性组合对f作最佳逼近. 线性逼近方法的理论中最引人注目的是收敛问题.令x为一Banach空间,{甲:(t),中2(t),…}是X上某个线性无关函数系,令灾N为这个系的前N(N=1,2,…个元素形成的子空间,叽为X到贝八N二1,2,…上的有界线性算子.对任何f‘X,收敛关系式珠以O~f(t)(在11叽一fllx~0(N~的)的意义下)成立,当且仅当:l)U、的范数列11叭}}有界,见B田.山-Stei曲aus定理(Banach一Steinhaus theorem):2)对于X中处处稠密的集合A上的所有函数f有认以t)一f(O.特别地,在周期为27r的函数空间乌=乌[0,2司(l
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条