1) Leggett inequality
Leggett不等式
1.
Leggett inequality and nonlocal realism
Leggett不等式和非定域实在论
2) Leggett-type inequality
Leggett型不等式
3) Leggett-Garg inequality
Leggett-Garg不等式
5) Leggett-Williams fixed point theorem
Leggett-Williams不动点定理
1.
We apply Leggett-Williams fixed point theorem to discuss multi-point boundary value problem of the second-order differential equation system u″+f(t,u,v)=0,0≤t≤1,v″+g(t,u,v)=0,0t1,u(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(0)=0,v(1)-∑m-2i=1liv(ηi)=0,where f,g:\×[0,∞)×[0,∞)→[0,∞) are continuous,growth conditions are imposed on f,g,which yield the existence of at least three positive solutions for the system.
利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0≤t≤1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的。
2.
Using Leggett-Williams fixed point theorem,we show that it has at least three positive solutions.
讨论测度链上二阶边值问题,xΔΔ+k(t)f(t,x(σ(t)))=0,t∈[t1,t2],αx(t1)-βxΔ(t1)=0,γx(σ(t2))+δxΔ(σ(t2))=0正解的存在性,[t1,t2]T,T是测度链,利用Leggett-Williams不动点定理,可得该问题至少存在3个正解。
3.
The tools used in this thesis are the cone theory, the cone expansion and compression fixed point theorem, operator approximation theory, fixed point index theorems, Leggett-Williams fixed point theorem, Avery-Henderson fixed point theorem.
这篇硕士论文主要讨论几类奇异非线性三点边值问题对称正解的存在性,采用的工具是锥压缩与锥拉伸不动点定理、算子近似理论和不动点指数理论、Leggett-Williams不动点定理、Avery-Peterson不动点定理。
6) inequality
[英][,ɪnɪ'kwɔləti] [美]['ɪnɪ'kwɑlətɪ]
不等式;不等
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条