1) semi-linear functional differential equation
半线性泛函微分方程
1.
The robust stability of the abstract semi-linear functional differential equation ddtx(t)=Ax(t)+F(t,xt(·)) is considered in Banach space X,where the linear operator A generates a C0-semigroup(T(t))t≥0 in X,and F is a nonlinear function.
研究Banach空间X中的抽象半线性泛函微分方程ddtx(t)=Ax(t)+F(t,xt(。
2) second order half-linear functional differential equations
二阶半线性泛函微分方程
1.
By means of auxilliary functions and Young inequality technique,new oscillation criteria are established for second order half-linear functional differential equations.
通过引入辅助函数和利用Young不等式技巧,研究二阶半线性泛函微分方程解的振动性,所得的结果是新的,且改进了AgarwalRP等人的一个结果。
3) nonlinear functional differential equation
非线性泛函微分方程
1.
Boundness of second order nonlinear functional differential equations;
一类二阶非线性泛函微分方程解的有界性
2.
Oscillatory and asymptotic behavior of solutions of the second order nonlinear functional differential equation(a(t)(y (t)σ)+q(t)f(y(τ(t))g(y (t))=0,t≥t0 are considered, where σ is a positive quotient ofeven over odd integers.
研究了二阶非线性泛函微分方程(n(t)(y'(t))σ)+q(t)f(y(τ(t))g(y'(t))=0,t≥t0解的振动性 与渐近性,其中σ是一个偶数与奇数的正商时,所得的结果是全新的。
3.
The general nonlinear functional differential equations with infinite delay was investigated.
研究一般的具有无穷时滞的非线性泛函微分方程。
4) nonlinear functional differential equations
非线性泛函微分方程
1.
Boundedness of second-order nonlinear functional differential equations;
关于二阶非线性泛函微分方程的有界性
2.
Considers boundedness of solutions of nonlinear functional differential equations,obtains several new sufficient criterion.
对一类非线性泛函微分方程解的有界性进行探讨,得到了几个新的判别法则。
6) second order nonlinear functional differential equation
二阶非线性泛函微分方程
1.
This paper discusses a class of second order nonlinear functional differential equations.
利用广义Riccati技巧和平均方法讨论了一类二阶非线性泛函微分方程,得到此类方程所有解振动的新准则。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条