1) locally identiries semigroup
局部单位元半群
2) local units
局部单位元
1.
Let R be a G-graded ring with local units,G be an arbitrary group, K and H are subgroups of G satisfying KHG,we study the isomorphism between the category(H/K,R#G/H)-gr of left R#G/H-modules graded by H/K and the category(G/K,R)-gr of left R-modules graded by G/K.
设R是具有局部单位元的G-分次环,对于任意群G及其子群H K。
2.
Let R be a G-graded ring with local units,if we view H-graded rings R#G/H as-setH/K-graded rings,then we will get the category(H/K,R#G/H)-gr is isomorphic to the category(G/K,R)-gr.
若R是具有局部单位元的G-分次环则可将H-分次环自然地看成H-集H/K-分次环,得到H/K-分次-模范畴(H/K,)-gr与G/K-分次R-模范畴(G/K,R)-gr同构。
3) ldentity of Semigroup Semiring
半群半环的单位元
4) locally inverse semigroup
局部逆半群
1.
We prove that≤* is the least completely simple semigroup congruence on a regular semigroup,(≤∪≤~(-1))t is the least completely simple semigroup congruence on a locally inverse semigroup and the the least,group congruence on an inverse semigroup.
研究了正则半群上的完全单半群同余,给出了这类同余的若干等价刻画,证明了≤是任意正则半群上的最小完全单半群同余,(≤U≤~(-1))~t 是任意局部逆半群上的最小完全单半群同余,是任意逆半群上的最小群同余。
5) locally type A semigroup
局部型-A半群
6) Local C-Semigroups
局部C半群
1.
Local C-Semigroups and Abstract Cauchy Problem;
局部C半群与抽象Cauchy问题
补充资料:局部
一部分;非全体:~麻醉 ㄧ~地区有小阵雨。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条