2) Riemann solvers
Riemann解法器
1.
In the first part, the Riemann solvers in Godunov-type schemes are considered in the hyperbolic conservation laws systems.
第一部分提出了一个新的Riemann解法器,利用两步分裂的思想,对原Riemann问题的求解转化为两个相关的子问题的求解。
3) Riemann solver
Riemann解
1.
The numerical flux of the interface between cells are computed by the exact Riemann solver,and the improved dry Riemann solver is used to deal with wet/dry problem.
应用准确Riemann解求解法向数值通量,用改正的干底Riemann解处理动边界问题。
2.
The numerical flux of the interface between cells are computed by exact Riemann solver, and the improved dry Riemann solver is applied to deal with wet/dry problem.
应用准确Riemann解求解法向数值通量,用改正的干底 Riemann解处理动边界问题。
4) Riemann solution
Riemann解
1.
The Godunov scheme with an exact Riemann solution is used to solve the shallow water equations, and the classical Riemann solution on dry flat bed is improved to be suitable to the moving boundary with non-flat bed.
采用基于准确Riemann解的Godunov格式求解浅水流动方程,将仅适用于平底的干底Riemann解推广到处理非平底动边界问题。
2.
Based on exact the Riemann solution, this paper presents a Godunovtype scheme for 1D shallowwater equations with uneven bottom Central difference and the Riemann solution with "water level formulation" are used in the discretisation of the source term to keep the scheme wellbalanced Numerical experiments are presented to demonstrate that the scheme is robust, versatile and high in resolution
以准确Riemann解为基础,建立了求解一维非平底浅水流动方程的Godunov格式,用"水位方程法(WaterLevelFormulation,WLF)"求解Riemann解,结合中心差分和Riemann解离散底坡项,保证了计算格式的和谐性。
5) rotating machinery resolver
旋转机械分解器
6) solve in turns
辗转求解
补充资料:旋转
分子式:
CAS号:
性质:将图像(或分子)绕一定轴线转动一定角度后能使图像复原的一类对称动作。旋转据以进行的轴线称作旋转轴,使图像绕轴后复原的最小转角称作基转角α。设α=2π/n,显然,旋转角为α整数倍的角度均能使图像复原,不难论证,在2π角度范围内独立、不等同旋转对称动作的种数为n。
CAS号:
性质:将图像(或分子)绕一定轴线转动一定角度后能使图像复原的一类对称动作。旋转据以进行的轴线称作旋转轴,使图像绕轴后复原的最小转角称作基转角α。设α=2π/n,显然,旋转角为α整数倍的角度均能使图像复原,不难论证,在2π角度范围内独立、不等同旋转对称动作的种数为n。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条