说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Hamilton圈分解
1)  Hamiltonian factorization
Hamilton圈分解
1.
Hamiltonian factorization of 2~n P~m degrees Cayley graphs
2~np~m阶群上Cayley图的Hamilton圈分解
2)  Hamiltonian decomposition
Hamilton圈的分解
3)  fractional (directed) Hamiltonian cycle
分数(有向)Hamilton圈
4)  hamilton cycle
Hamilton圈
1.
Graphs whose maximum spanning Eulerian subgrahs are Hamilton cycles;
极大欧拉生成子图为Hamilton圈的图
2.
In this paper,the sufficient conditions are given out that C_n~m can be factorized into Hamilton cycles and G~(2m) has m edge-disjoint Hamilton cycles.
本文通过讨论n阶圈C_n的m次幂(n>2m)给出连通无爪图的2m次幂存在m个边不交Hamilton圈的一个充分条件。
3.
Authors discuss the Hamiltonian property of Cartesiam product (C_n)×(C_m) about two directed cycles (C_n)and(C_m), give and show that: (C_n)×(C_m) has a directed Hamilton path,but not has generally a directed Hamilton cycle.
讨论两个有向圈Cn与Cm的卡氏积图Cn×Cm的Hamilton性,给出并证明了:Cn×Cm存在有向Hamilton路,但未必存在有向Hamilton圈;当n|m时,Cn×Cm必存在有向Hamilton圈。
5)  Hamilton circle
Hamilton圈
1.
On the belief that Hamilton circle determines Hamilton graph,the paper suggests a transformation method to locate Hamilton circle in the graph,ie.
一个图是否为Hamilton图在于图中是否有Hamilton圈。
2.
Minimal Hamilton circle, which can be applied to solving problem of street vender s load, wants for an effective method of solving so far.
最小 Hamilton圈可以用于求解货郎担问题 ,但至今没有一种有效的求解最小 Hamilton圈的方法 。
6)  Hamiltonian cycle
Hamilton圈
1.
Hamiltonian cycles in cubelike recursive networks;
立方形递归网络中的Hamilton圈
2.
The problem of edge-disjoint Hamiltonian cycles was widely concerned in theory and application.
结合Lee距离Gray码理论证明了扭n立方体中存在[n/2]个边不交Hamilton圈,并且给出这些边不交Hamilton圈的生成方法。
3.
Some formulas for calculating the number of all distinct Hamiltonian cycles in some simple graphs are provided and upper(resp.
给出了计算简单图中Hamilton圈的几个公式,并对简单图中Hamilton圈的个数的上下界加以探讨。
补充资料:HA
   CAS号  1415-93-6
    性质  黑褐色或棕黑色无定形粉末。呈弱酸性,溶于碱,难溶于酸,有亲水性、离子交换性、络合性、分散性等综合性能。可聚合,其聚合物(聚腐殖酸)有耐热、耐盐性能。
     用途  用于蓄电池极板负极添加剂。
   包装储运  内衬塑料袋、外套编织袋包装,每袋25kg。贮存于阴凉、干燥、通风的库房内。防潮、防雨。搬运时轻装轻卸,以防包装破损。按一般化学品规定贮运。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条