说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 交错Hamilton圈
1)  alternating Hamilton cycle
交错Hamilton圈
2)  La Coste
交错集圈
1.
A comparative study of dimensional properties of La Coste type fabrics;
单面交错集圈针织物的尺寸特性
3)  alternating cycle
交错圈
4)  hamilton cycle
Hamilton圈
1.
Graphs whose maximum spanning Eulerian subgrahs are Hamilton cycles;
极大欧拉生成子图为Hamilton圈的图
2.
In this paper,the sufficient conditions are given out that C_n~m can be factorized into Hamilton cycles and G~(2m) has m edge-disjoint Hamilton cycles.
本文通过讨论n阶圈C_n的m次幂(n>2m)给出连通无爪图的2m次幂存在m个边不交Hamilton圈的一个充分条件。
3.
Authors discuss the Hamiltonian property of Cartesiam product (C_n)×(C_m) about two directed cycles (C_n)and(C_m), give and show that: (C_n)×(C_m) has a directed Hamilton path,but not has generally a directed Hamilton cycle.
讨论两个有向圈Cn与Cm的卡氏积图Cn×Cm的Hamilton性,给出并证明了:Cn×Cm存在有向Hamilton路,但未必存在有向Hamilton圈;当n|m时,Cn×Cm必存在有向Hamilton圈。
5)  Hamilton circle
Hamilton圈
1.
On the belief that Hamilton circle determines Hamilton graph,the paper suggests a transformation method to locate Hamilton circle in the graph,ie.
一个图是否为Hamilton图在于图中是否有Hamilton圈。
2.
Minimal Hamilton circle, which can be applied to solving problem of street vender s load, wants for an effective method of solving so far.
最小 Hamilton圈可以用于求解货郎担问题 ,但至今没有一种有效的求解最小 Hamilton圈的方法 。
6)  Hamiltonian cycle
Hamilton圈
1.
Hamiltonian cycles in cubelike recursive networks;
立方形递归网络中的Hamilton圈
2.
The problem of edge-disjoint Hamiltonian cycles was widely concerned in theory and application.
结合Lee距离Gray码理论证明了扭n立方体中存在[n/2]个边不交Hamilton圈,并且给出这些边不交Hamilton圈的生成方法。
3.
Some formulas for calculating the number of all distinct Hamiltonian cycles in some simple graphs are provided and upper(resp.
给出了计算简单图中Hamilton圈的几个公式,并对简单图中Hamilton圈的个数的上下界加以探讨。
补充资料:交错环和交错代数


交错环和交错代数
alternative rings and algebras

  交错环和交错代数1 aitettla幼犯d雌s叨d川邵b”.;助‘T印.叮娜助砚”山田叨皿叨,曦讨J 孪拳所(al temative ring)是指每两个元素都生成一个结合子环的环;孪考华熬(al ter”ativeai二玩a)是(线性)代数并且是交错环.根据E.Artin的一个定理,所有交错环的类由如下一组等式定义: (习)y”x切)(右交错性); (xx)y二x(却)(左交错性).于是,交错环形成一个簇.在这种环里,结合子(ass呱ator)(结合性的亏量) (x,少,:)=(xy卜一x恤)是其自变元的一个斜对称〔交错)函数,这个事实表明使用术语“交错环”是合理的. 交错环的第一个例子是Ca尹ey数(Caylcy num-悦巧),它作成一个交错除环(幻忱n犯ti说s处阴一几城)或交错体,即有单位元的交错环且对于任意b和a笋0,方程ax=b和ya=b有唯一的解.交错除环在射影平面的理论中起着实质性的作用,这是因为一个射影平面是一个Motlfa飞平面(Mdufangp场能)(即关于某一直线的平移平面),当且仅当其三元环的任何坐标化是交错除环.在一个有单位元的环R中,如果每个非零元素均可逆且对任意a,b〔R均有等式a一’(ab)二乙(或者,(b a)a一’=b),则R是交错除环.任何交错除环或者是结合的,或者是其中心上的Ca洲ey一Di改50.代数(Qyley-众汰阳n爽灼ra). 每个单交错环也或者是结合环,或者是其中心上的Cayley一Di由on代数(在这种情形下,此代数未必是体).结合环和本原交错环都被Cayley·Di山on代数所穷尽.所有素交错环R(如果3R护0)或是结合环,或是Cayley一Dickson环. 在相似的条件下,交错环的许多性质本质上不同于结合环.例如,如果R是交错环,A和B是其右理想,则其积月丑未必是右理想,即使A是双边理想也如此.但是,两个双边理想的积仍是双边理想.交错环与结合环的差异也强烈地体现在这样的事实之中:由于括号放的位置不同,元素的积或是零或非零,从而交错环有各种幂零性.通常在交错环中使用如下几种幕零性:可解性(s olvabilit刃(环R称为具有指数m的可解子(s ulvable ringl如果存在自然数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条