说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 以权分担值
1)  Weighted sharing of values
以权分担值
2)  weighted sharing
权分担值
1.
Using the idea of weighted sharing,deal with the uniqueness problems on meromorphic functions concerning differential polynomials.
采用权分担值的思想讨论了亚纯函数关于微分多项式分担值的唯一性问题。
2.
Using the idea of weighted sharing,deal with the uniqueness problems on entire functions concerning differential polynomials.
采用权分担值的思想讨论了整函数关于微分多项式分担一个小函数的唯一性问题。
3)  weighted sharing
权分担
1.
Using the idea of weighted sharing proved some results of uniqueness of meromorphic functions sharing three values which improve sereral theorems proved by H.
Lahiri等人关于CM、IM公共值的问题推广到权分担值的情形,改进了他们的一些定理。
2.
Taking advantage of weighted sharing,we prove some results on uniqueness of meromorphic functions that share three values with one shared value for their derivatives,which improves results given by K.
研究了亚纯函数权分担三个公共值及导函数权分担一个公共值的唯一性问题,改进了K。
3.
Using the idea of weighted sharing,deal with the uniqueness problems on meromorphic functions that sharing three sets.
利用权分担集合的思想讨论了关于分担三个集合的亚纯函数的唯一性问题。
4)  weighted sharing
加权分担
1.
Study the uniqueness problem on meromorphic functions concerning differential polynomial sharing a small function in a view of weighted sharing and improve a fomer result.
从加权分担的角度研究一类亚纯函数关于其微分多项式分担值的唯一性问题,并推广了已有的结果。
2.
In 2000, Lahira gave a method--weighted sharing to research sharing values of meromorphic functions and used this method to improve some results of meromorphic functions.
2000年,Lahiri提出了加权分担的思想,并用此法改进了亚纯函数的一些结果。
5)  Share value
分担值
1.
In this paper, it is shown that if f is a nonconstent meromorphic function, {a1, b1 } and a1b2=a2b1,then f={a2, b2)are two couples of CM share value of {f,f },satisfying a1b2=a2b1,then f
本文主要得到:设f{a1,b1},{a2,b2}是{f,f'}的两对CM分担值,若a1b2=a2b1,则。
2.
It has been proven that if f(z)and g(z)are non-constant meromorphic functions and o, ∞ is CM share values of f(z) and g(z) ,1 is CM share value f_((z))~((n))and g_((z))~((n)),satisfying λ
本文证明了定理:设f(z)和g(z)是两个非整函数的亚纯函数,如果0,∞是f(z)和g(z)的两个CM分担值,1是f_((z))~((n))和g_((z))~((n))的一个CM分担值,且 那么f_((z))~((n))·g_((z))~((n))≡1或者f(z)≡g(z) (n∈/N
3.
We define share value of a class of meromorphic function, and prove that if has three share values in a domain D, then is normal in D.
定义了半纯函数族的限制值和分担值,证明若在区域D内有3个限制值或3个分担值,则为在D内正规。
6)  Sharing value
分担值
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条