说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多窗口自适应中值滤波器
1)  multi-window adaptive median filter
多窗口自适应中值滤波器
1.
A multi-window adaptive median filter(MWMF) based on cross-window and furcate-window filter is proposed,in which cross window or furcate window can be selected adaptively based on the image shape in the window.
本文提出并设计一种将十字窗和叉形窗有机结合的多窗口自适应中值滤波器(MWMF滤波器),可根据窗口内图像自身的形状,自适应地选择十字窗和叉形窗。
2)  adaptive median filter
自适应中值滤波器
1.
Salt-and-pepper noise removal by adaptive median filter and TV inpainting;
基于自适应中值滤波器和TV修复的椒盐噪声去除(英文)
2.
To remedy disadvantage of traditional median filtering algorithms in image de-noise,adaptive median filter is introduced and applied to image de-noise.
为了弥补传统中值滤波器在进行图像降噪处理中的不足,在图像降噪技术中应用了自适应中值滤波器。
3)  adaptive weighted median filter
自适应权重中值滤波器
1.
The paper presents an easily applicable adaptive weighted median filter(AWMF).
通过介绍一种易于实现的自适应权重中值滤波器(AWMF)。
4)  improved adaptive median filter
改进自适应中值滤波器
5)  adaptive median filter
自适应中值滤波
1.
Impulse noise reduction by variational method based on adaptive median filter;
一种变分自适应中值滤波算法
2.
The research of the ameliorated adaptive median filter algorithm
一种改进的自适应中值滤波算法研究
3.
To overcome the drawbacks of the standard median filter, the adaptive median filter is proposed in this paper.
针对标准中值滤波方法存在的不足 ,提出自适应中值滤波方法 该方法通过噪声检测确定子图像中的脉冲噪声点及噪声干扰大小 ,根据噪声干扰程度选择滤波窗口的尺寸 ,并采用改进的中值滤波方法对检测出的噪声点进行滤波 计算机模拟实验结果表明 :自适应中值滤波能在有效地去除噪声的同时 ,较好地保护图像细节 ,较标准中值滤波具有更优良的滤波性能 ,其滤波速度也较中值滤波具有明显优
6)  medium and gradient_based adaptive filter
中值自适应滤波
1.
The main steps are:① Pretreatment with the medium and gradient_based adaptive filter in order that the segmentation can be carried out correctly;② The region_segmentation with t.
分析了相位解缠的原理及干涉条纹数据的特点 ,提出了一种基于中值自适应滤波、区域分割和编码的解缠方法。
补充资料:自适应滤波器
      以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。
  
  
  20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。
  
  以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得
  
    (1)式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。
  
  B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量
  
    (2)式中憕[ε2(n)]为均方误差梯度估计,
  
  
  (3)ks为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。
  
  自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。
  
  抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。与非递归型结构自适应算法相比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。
  
  自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不同,基本原理则是相同的。
  
  

参考书目
   R.A.Monzingo, T.W.Miller, Introduction to Adaptive Arrays, John Wiley and Sons,New York,1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条