说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 扰动发展方程
1)  disturbed evolution equation
扰动发展方程
2)  Development of disturbance
扰动发展
3)  perturbation equation
扰动方程
1.
In the regular solution problem of the perturbation equation,the solution of convergence order is important.
在扰动方程的正则化求解问题中,解的收敛性估计是十分重要的。
2.
This paper gives some new and easy to test criteria, can discriminate invertibility of A class of nondiagonally dominant matrices, and gives the upper bound of |A-1| and the error estimate of solving relevant perturbation equations (A + A)(x + 6x) = b+b by simple and convenient method.
本文给出一些新的、易于检验的判别定理,能通过简便的方法来判别一类非对角占优矩阵A的可逆性、给出‖A~(-1)‖的上界以及解相应扰动方程组(A+δA)(X+δx)=b+δb的误差估计,具有较好的实用价值。
4)  perturbed equations
扰动方程
1.
An iterative method is designed to advance the Ishikawa iteration and solve perturbed equations of accretive operators.
主要研究了用迭代法求解增生算子紧扰动方程 。
5)  disturbed equation
扰动方程
1.
This paper was based on the optimizing regular solution of general disturbed equation in paper [1], then discussed its asymptotic convergence.
针对文献 [1]中所给一般扰动方程的Tikhonov优化正则化解法 ,讨论了该解的渐进收敛
2.
We discuss the stability of the solutions of the singalar integral equations with Cauchy kernel in L 2 ω and get the estimation of the solutions of the disturbed equations, and prove the continuous dependence of the solutions for known functions.
讨论了在区间[-1,1]上带Cauchy核奇异积分方程在L2ω[-1,1]中解的稳定性,获得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖
3.
This article gives the stability conditions,gets the estimation of the solutionfor the disturbed equation, and proves the continuing dependence of the solution for theknown functions.
讨论了H(ω)上带Hilbert核奇异积分方程解的稳定性,给出了稳定性条件,推得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖性。
6)  evolution equation
发展方程
1.
Convergence of difference method for initial boundary value problem of a kind of evolution equation;
一类发展方程初边值问题差分法的收敛性
2.
Stability study of difference method for solution of a kind of nonlinear evolution equations;
一类非线性发展方程差分法的稳定性
3.
The homotopic solving method of solitary wave for strong nonlinear evolution equation;
强非线性发展方程孤波同伦解法
补充资料:扰动
分子式:
CAS号:

性质:驰豫动力学中有下述两种扰动方法。⑴跃变方法(jump method)。外部条件引起体系温度、压力等的跃变,从而引起原有的平衡破坏而趋向与新的平衡。跃变时间与化学反应时间相比认为是瞬时完成的,如温度跃变法、压力跃变法、电场跃变法等。可参见梯度函数。⑵稳态方法(stationary method)。其扰动是周期性的,如方波扰动、正弦扰动,体系组分的浓度呈周期性的变化,可参见超声吸收、介电弛豫等。稳态扰动又称定常扰动(steady disturbance)、定常法(steady method )。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条