说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 扰动方程;微扰方程
1)  perturbation equation
扰动方程;微扰方程
2)  perturbation equation
扰动方程
1.
In the regular solution problem of the perturbation equation,the solution of convergence order is important.
在扰动方程的正则化求解问题中,解的收敛性估计是十分重要的。
2.
This paper gives some new and easy to test criteria, can discriminate invertibility of A class of nondiagonally dominant matrices, and gives the upper bound of |A-1| and the error estimate of solving relevant perturbation equations (A + A)(x + 6x) = b+b by simple and convenient method.
本文给出一些新的、易于检验的判别定理,能通过简便的方法来判别一类非对角占优矩阵A的可逆性、给出‖A~(-1)‖的上界以及解相应扰动方程组(A+δA)(X+δx)=b+δb的误差估计,具有较好的实用价值。
3)  perturbed equations
扰动方程
1.
An iterative method is designed to advance the Ishikawa iteration and solve perturbed equations of accretive operators.
主要研究了用迭代法求解增生算子紧扰动方程 。
4)  disturbed equation
扰动方程
1.
This paper was based on the optimizing regular solution of general disturbed equation in paper [1], then discussed its asymptotic convergence.
针对文献 [1]中所给一般扰动方程的Tikhonov优化正则化解法 ,讨论了该解的渐进收敛
2.
We discuss the stability of the solutions of the singalar integral equations with Cauchy kernel in L 2 ω and get the estimation of the solutions of the disturbed equations, and prove the continuous dependence of the solutions for known functions.
讨论了在区间[-1,1]上带Cauchy核奇异积分方程在L2ω[-1,1]中解的稳定性,获得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖
3.
This article gives the stability conditions,gets the estimation of the solutionfor the disturbed equation, and proves the continuing dependence of the solution for theknown functions.
讨论了H(ω)上带Hilbert核奇异积分方程解的稳定性,给出了稳定性条件,推得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖性。
5)  perturbed differential equation
扰动微分方程
1.
Perturbed differential equation.
用Liapunov函数,对解非线性扰动微分方程的变分方程的基本解矩阵,给出了一种指数估计的存在准则。
6)  undisturbed differential equation
无扰动微分方程
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条