1) fundamental equations of limit analysis
极限分析基本方程
2) finite element formula
有限元基本方程
6) limit analysis
极限分析
1.
Fundamental equations for limit analysis of soil mass and generalized method of limit equilibrium;
土体极限分析的基本方程与广义极限平衡法
2.
3D analysis of ultimate bearing capacity by numerical limit analysis;
三维地基极限承载力的数值极限分析
3.
Upper bound limit analysis of slope stability by element integration method;
边坡稳定极限分析的单元集成法
补充资料:有限差方程
含有未知函数的差分的条件等式,它是重要的一类函数方程,也称有限差分方程。
有限差方程的一般形式是, (1)式中F是已知函数,??(x)是未知函数,Δ是差分算子(见有限差演算)。利用Δ与移位算子E的关系式Δ=E-I,其中I是不变算子,(1)可化成。 (2)
如果(2)既明显地含有??(x+nh),又含有??(x)就称(1)或(2)为n阶有限差方程。
满足有限差方程的函数称为它的解,n阶有限差方程的含有 n个任意常数的解称为通解。通解中的任意常数被确定后,即可获得一个特解。
线性有限差方程解的结构 称有限差方程,
(3)为n阶线性有限差方程。如果Q(x)呏0,则称该方程为齐次方程;反之,则称为非齐次方程。
方程(3)的解具有以下性质:① ?绻???1(x),??2(x),...,??n(x)是相应于方程(1)的齐次方程的线性无关解,则相应的齐次方程的通解为,其中C1,C2,...,Cn为任意常数。②方程(3)的通解可表为它的一个特解 ??*(x)与相应的齐次方程的通解之和,即,这两条性质就完全确定了线性有限差方程解的结构。
常系数线性有限差方程 如果方程(3)中的αk(x)(k=0,1,...,n)都为常数,且h=1,则方程 (4)就是常系数线性有限差方程。
求得方程(4)的通解,可根据线性有限差方程解的结构特点,由以下两个步骤来完成。第一步,求相应于(4)的齐次方程 的通解。设??(x)=λx,代入上述方程,得到,称它为相应齐次方程的特征方程,其根称为特征根。如果所有的特征根λ1,λ2,...,λn都是实的单根,则齐次方程的通解为:如果特征根中有实的重根出现,则齐次方程的通解为
,式中sk为特征根λk的重数, 且s1+s2+...+sp=n;Cjk(j=1,2,...,sk;k=1,2,...,p)为任意常数。第二步, 求非齐次方程(4)的一个特解。当右端函数 Q(x)具有某些特殊形式时,利用待定系数法可以直接求得特解,例如Q(x)是 k次多项式,且 1是相应的特征方程的s重根,则设,代入方程(4),两边对比系数,可求出待定系数A0,A1,...,Ak,从而求得方程(4)的一个特解??*(x)。又如Q(x)=p(x)b)x,其中p(x)为k次多项式,k为特征方程的s重根,则设, 代入方程(4),求出待定系数,即得方程(4)的一个特解。将两步所求得的结果相加,即可得到方程(4)的通解。
如果特征根中出现复根,则对每一对共轭复根,利用欧拉公式,分别取实部和虚部作为线性无关解,参照上述方法,也可得到实的通解
除去上述的解法,还可利用发生函数、符号算子以及变易常数等方法去求方程(4)的通解。
举例 求二阶常系数线性有限差方程,满足条件??(1)=??(2)=1的方程解??(n),其中变量n取自然数。
相应的特征方程为 λ2-λ-1=0。由此解出特征根为。从而通解为,由条件 ??(1)=??(2)=1可求得。故解为
。这就是斐波那契数列的通项表达式。
参考书目
L.M.Milne-Thomson,The Calculus of Finite Differences, Macmillan, London,1951.
有限差方程的一般形式是, (1)式中F是已知函数,??(x)是未知函数,Δ是差分算子(见有限差演算)。利用Δ与移位算子E的关系式Δ=E-I,其中I是不变算子,(1)可化成。 (2)
如果(2)既明显地含有??(x+nh),又含有??(x)就称(1)或(2)为n阶有限差方程。
满足有限差方程的函数称为它的解,n阶有限差方程的含有 n个任意常数的解称为通解。通解中的任意常数被确定后,即可获得一个特解。
线性有限差方程解的结构 称有限差方程,
(3)为n阶线性有限差方程。如果Q(x)呏0,则称该方程为齐次方程;反之,则称为非齐次方程。
方程(3)的解具有以下性质:① ?绻???1(x),??2(x),...,??n(x)是相应于方程(1)的齐次方程的线性无关解,则相应的齐次方程的通解为,其中C1,C2,...,Cn为任意常数。②方程(3)的通解可表为它的一个特解 ??*(x)与相应的齐次方程的通解之和,即,这两条性质就完全确定了线性有限差方程解的结构。
常系数线性有限差方程 如果方程(3)中的αk(x)(k=0,1,...,n)都为常数,且h=1,则方程 (4)就是常系数线性有限差方程。
求得方程(4)的通解,可根据线性有限差方程解的结构特点,由以下两个步骤来完成。第一步,求相应于(4)的齐次方程 的通解。设??(x)=λx,代入上述方程,得到,称它为相应齐次方程的特征方程,其根称为特征根。如果所有的特征根λ1,λ2,...,λn都是实的单根,则齐次方程的通解为:如果特征根中有实的重根出现,则齐次方程的通解为
,式中sk为特征根λk的重数, 且s1+s2+...+sp=n;Cjk(j=1,2,...,sk;k=1,2,...,p)为任意常数。第二步, 求非齐次方程(4)的一个特解。当右端函数 Q(x)具有某些特殊形式时,利用待定系数法可以直接求得特解,例如Q(x)是 k次多项式,且 1是相应的特征方程的s重根,则设,代入方程(4),两边对比系数,可求出待定系数A0,A1,...,Ak,从而求得方程(4)的一个特解??*(x)。又如Q(x)=p(x)b)x,其中p(x)为k次多项式,k为特征方程的s重根,则设, 代入方程(4),求出待定系数,即得方程(4)的一个特解。将两步所求得的结果相加,即可得到方程(4)的通解。
如果特征根中出现复根,则对每一对共轭复根,利用欧拉公式,分别取实部和虚部作为线性无关解,参照上述方法,也可得到实的通解
除去上述的解法,还可利用发生函数、符号算子以及变易常数等方法去求方程(4)的通解。
举例 求二阶常系数线性有限差方程,满足条件??(1)=??(2)=1的方程解??(n),其中变量n取自然数。
相应的特征方程为 λ2-λ-1=0。由此解出特征根为。从而通解为,由条件 ??(1)=??(2)=1可求得。故解为
。这就是斐波那契数列的通项表达式。
参考书目
L.M.Milne-Thomson,The Calculus of Finite Differences, Macmillan, London,1951.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条