1) Marginal stain
边缘着色
2) margioal gingival discolouration
边缘龈着色
3) edge-colouring
边着色
1.
This paper studies the referee assignment in the course of a single-recycling game by means of theory of edge-colouring and total colouring of graph and gives the optimal results.
应用图的边着色和全着色理论,研究了赛程中的单循环比赛的裁判分派问题,给出了最优分派结果。
4) edge coloring
边着色
1.
On the optimum graph of strong edge coloring conjecture
关于强边着色猜想的最优图问题
2.
In our approach, the original network is decomposed into a set of smaller subnetworks to be processed, based on the concept of edge coloring and numbering combined with network topology.
基于边着色和标号的思想 ,结合网络拓扑 ,将原来的网络分解为一系列更小规模的子网络进行处理 。
3.
The problem is Abstracted as an edge coloring problem of multi-graphs.
研究复杂电磁环境下相控阵天线波束对准的通信调度机制,并将其抽象为重图的边着色问题。
5) edge-coloring
边着色
1.
Supposing Г to be a 4-regtilar connected Cayley graph on an abelian group of odd order, the edge-coloring problem ofГ-{e1,e2 } is discussed in this paper,where e1, e2 are two arbitrary edges of Г.
讨论了的边着色问题,其中e1,e2是Г的任意两边。
2.
Given a simple graph G,an edge-coloring of G with colors 1,2,3,… is called consecutive if the colors represented at each vertex form an interval of integers.
设G是简单图,用颜色1,2,3,…,对G的正常边着色,如果每一个顶点上表现的颜色都构成一个连续的整数集合,那么就称这个边着色是连续的。
3.
Given a simple graph G, an edge-coloring of G with colors 1,2,3 .
设G是简单图,用颜色1 ,2 ,3……对G的边着色。
6) edge colouring
边着色
1.
The determination of pefext matchings of a complete graph K_(4n) on the basic of △(G′)-edge colouring;
基于完全二分图矩阵的△(G)-边着色求解完全图K_(4n)的完备匹配
2.
A(λ,β)-flaw k-edge colouring of a connected graph G=(V,E) is a mapping from E to {1,2,…,k} if there is a smallest integer β≥1 such that for every colour j∈{1,2,…,β} there is at least a vertex uj∈V(G)that is incident with λ edges coloured by colour j,and for each color l∈{β+1,…,k} no two edges incident with any vertex v∈V(G)receive the colour l.
图G=(V,E)的一个(λ,β)-瑕k-边着色是一个从E到{1,2,…,k}的映射,且存在一个最小整数β≥1,对每一个色j∈{1,2,…,β},至少存在一个顶点uj∈V(G)使得顶点uj关联着有色的j条边;对每一个色l∈{β+1,…,k},没有两条相邻边着有色l。
补充资料:边缘
①沿边的部分:~区◇处于破产的~。②靠近界线的;同两方面或多方面有关系的:~学科。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条