1) Delay differential-algebraic equations
延时微分代数方程
1.
Delay differential-algebraic equations (DDAEs), which have both delay and algebraic con-straints, arise in a wide variety of scientific and engineering applications, including circuit analy-sis, computer-aided design and real-time simulation of mechanical (multibody) systems, chemicalprocess simulation and optimal control.
延时微分代数方程(DDAEs)是具有时滞影响和代数约束的微分系统,广泛地应用于电路分析,计算机辅助设计,多体力学系统的实时仿真,化学反应模拟,最优控制等科学领域。
2) Delay differential algebraic equations
延迟微分代数方程
1.
Delay differential algebraic equations arise in a wide variety of scientific and engineering applications.
延迟微分代数方程 (DDAEs)广泛出现于科学与工程应用领域 。
3) time piecewise DAE
分时间段微分代数方程
4) delay differential equation
延时微分方程
1.
The stability behavior of numerical solution for delay differential equations with many delays was studied.
讨论了带有多个滞时量的延时微分方程的数值稳定性,分析了用块θ–方法求解多延迟微分方程GPm–稳定和GPLm–稳定的条件,基于Lagrange插值,证明了块θ–方法GPm–稳定的充分必要条件是方法是A-稳定的,块θ–方法GPLm–稳定的充分必要条件是θ=1。
2.
This paper deals with the stability of the IRK method for the numerical solution of a delay differential equation with many delays.
研究了用IRK方法求解多延时微分方程数值解的稳定性,对于线性模型方程,分析并证明了IRK方法是GPLm-稳定的当且仅当它是L稳定的。
3.
This paper deals with the stability analysis of the Rosenbrock method for the numerical solution of delay differential equation with many delays.
研究了用Rosenbrock方法求解多延时微分方程数值解的稳定性。
5) delay differential equations
延时微分方程
1.
The P mL stability of numerical solutions for delay differential equations(DDEs) is considered.
介绍了延时微分方程组的Pm L稳定性⒚用隐式RungeKutta 方法去解如下形式的含有m 个延时量的线性试验方程组:y′(t) = ay(t) + mj= 1djy t- τj , t≥0y(t) = φ(t) , t≤0其中a,bj(j = 1,2,…,m ) ∈C,τm ≥τm - 1 ≥…≥τ1 > 0⒀φ(t) 是已知函数⒚当m = 2 时,证明隐式RungeKutta 方法是P2L稳定的充要条件是它为L稳定的⒚当m > 2 时,此结论也成立
6) variable retarded differential algebraic equations
变时滞微分代数方程
补充资料:代数方程
见多项式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条