1) strongα-locally finite
强α-局部有限
2) Strong α-locally finite family
强α-局部有限族
1.
First,the concept of strong α-locally finite family is introduced in L-fuzzy topologi-cal spaces,and sheaf paracompactness,which more extensive than Ⅱ- paracompactness,is defined,and its basic properties are discu ssed.
首先,在L-fuzzy拓扑空间中引入了强α-局部有限族,并以此定义了比Ⅱ型强仿紧性 ̄[2]更为广泛的层仿紧性,且讨论了层仿紧集的基本性质。
3) ocally finite
α-局部有限
1.
In this paper,we introduce a new type of strong fuzzy paracompactness called Ⅲtype of strong fuzzy paracompactness by the concept of α locally finite family by whichwe may give the characterizations of strong fuzzy countable compactness.
本文引入一种新型的强F仿紧性─—Ⅲ型强F仿紧性,它是基于α-局部有限族概念提出的,这种α-局部有限族概念可用于刻划强F可数紧性。
4) strong locally finite family
强局部有限
5) α-locally finite collection
α-局部有限族
1.
We introduce the concept of α-locally finite collection as a variation of locally finite collection and s-locally finite collection.
作为局部有限族和s-局部有限族概念的推广,介绍了α-局部有限族的概念,并且通过举例说明了文献[1]中的一个结论是错误的。
6) strongly locally finite semigroup
强局部有限半群
1.
Furthermore we expand it to the case for strongly locally finite semigroup, and prove the following theorem: if \%T\% is strongly locally finite with order function \%f\% and all e\%φ\+\{-1\}\%, where e∈\%T\% is idempotent, are strongly local.
并把它推广到强局部有限半群的情况,证明了如果T是强局部有限半群,有阶函数f,且对每个幂等元e∈T,e-1是强局部有限的,有同一个阶函数g,则S是强局部有限的,且有一个从f和g可算的阶函数。
补充资料:强族
1.亦作"强族"。 2.豪门大族。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条