1) locally strong limit
局部强极限
2) strong locally finite family
强局部有限
3) strongly locally finite semigroup
强局部有限半群
1.
Furthermore we expand it to the case for strongly locally finite semigroup, and prove the following theorem: if \%T\% is strongly locally finite with order function \%f\% and all e\%φ\+\{-1\}\%, where e∈\%T\% is idempotent, are strongly local.
并把它推广到强局部有限半群的情况,证明了如果T是强局部有限半群,有阶函数f,且对每个幂等元e∈T,e-1是强局部有限的,有同一个阶函数g,则S是强局部有限的,且有一个从f和g可算的阶函数。
4) Strong α-locally finite family
强α-局部有限族
1.
First,the concept of strong α-locally finite family is introduced in L-fuzzy topologi-cal spaces,and sheaf paracompactness,which more extensive than Ⅱ- paracompactness,is defined,and its basic properties are discu ssed.
首先,在L-fuzzy拓扑空间中引入了强α-局部有限族,并以此定义了比Ⅱ型强仿紧性 ̄[2]更为广泛的层仿紧性,且讨论了层仿紧集的基本性质。
5) strongα-locally finite
强α-局部有限
6) local limit theorem
局部极限定理
1.
This paper discusses the errors of the approximate calculations of binomial distribution probability by using the Possion theorem,the local limit theorem and integral limit theorem respectively,makes comparison of the errors of the three approximate calculations,and analyzes in detail the error of the approximate calculation with partial limit theorem.
讨论了用Possion定理、局部极限定理和积分极限定理近似计算二项分布概率时的误差,对这3种近似计算的误差进行了比较,详细分析了用局部极限定理做近似计算时的误差。
补充资料:局部极限定理
局部极限定理
local limit theorems
局部极限定理工1.习11加it血幻吧璐;加K幼‘Hoe即e月-e月‘”从e即OPeM曰],机率论中的 关于密度的极限定理,即建立一列分布的密度向极限分布密度(如给定的密度存在)收敛的定理,或者,局部极限定理的经典形式,即格点分布的局部定理,其最简单的是局部La内ce定理(Laplacethe小祀m). 设x、,xZ,,·为一列有相同分布函数F(x)的独立随机变量,其均值为a,且有有限的正方差。’.令F。(x)表正规化和 z。一共一全(x,一。) 一”。在,织、才·,一,的分布函数,中(戈)表正态(0,1)分布函数上述假设保证了当n~的时,对任何x,F。(义)一。(x)·可以证明,即使分布F有密度,也并不蕴含随机变量Z。的分布密度p。(x)向正态密度 瓮。一,:,2的收敛性.如果对于某n二n。,Z。有有界密度夕。。(x),那么 户·(·,一瓮一”’2(·,关于戈一致成立.对某一 no,氏。(x)为有界这一条件,对于(*)关于x一致成立也是必要的. 设X,,X:,…为一列有共同非退化分布的独立随机变量,且设X,以概率1取形如b+Nh(N二0,士1,士2,一)的值,其中h>O而b为常数(即X、有步长为五的格点分布(h枕沁edistribu-tiori)). 假设X,有有限方差a’,令a=E Xl,且令 二‘、,一{,客X,一”·“儿}·为使当刀一卜二时 S:…平尸。(、,十 1(If。白+N八一。。飞,)1一一千三之,一exp哎一令les二认二‘涪卜‘二.}卜}~O 犷厄无一~『走ZL。创。」〕}成立,其必要充分条件是:步长j;应当是极大的.BB .rHe解以o的这个定理是局部妞place定理的一个推广. 关于独立非恒同分布随机变量和的局部极限定理在经典统计力学和量子统计学中乃是一个基本的数学工具(见[71,18]). 局部极限定理在独立随机变量与向量和的情形已做了充分的研究,同时还估计了这些定理中的收敛速度.极限分布为正态的情形研究得最为充分(见〔3],第7章),还有一些论文致力于任一稳定分布(stabledistribution)情形的局部极限定理〔见〔21).类似的研讨也已被搬到相依随机变量之和,特别是构成MaP-劝。链(Markovchain)的随机变量之和(见〔51,下6」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条