1) localδ- connectedness
局部δ-连通性
2) locally δ-connectivity
局部δ-连通
1.
Moreover, the properties of δ-connected component and locally δ-connectivity are also discussed.
同时对δ-连通分支及局部δ-连通性也作了研究 ,得到了一些较好的结
3) local connectivity
局部连通性
1.
This paper first presents two different mechanisms maintaining local connectivity AODV routing protocol:LL mechanism based on link layer feedback information and Hello mechanism of network layer,and compares the performance of AODV routing protocol under these two mechanisms through NS2.
针对AODV路由协议的两种局部连通性维护机制进行研究:链路层反馈信息的LL机制和网络层Hello机制,并通过NS2对2种不同机制下的AODV路由协议性能进行比较。
2.
In this paper, based on the theory of connectivity of filled Julia Setsfor even quartic polynomials, and local connectivity of Julia sets, connectivity offilled Julia sets for a class of quartic polynomials are concerned.
本文在Julia集的局部连通性和偶四次多项式Julia集的连通性理论的基础上,讨论了一类四次多项式填充Julia集的连通性。
4) local-connectivity
局部连通性
1.
We introduce a new and natural concept of fault tolerance for hypercube networks: local-connectivity.
该文提出了容错超立方体网络的一个很自然的新概念 :局部连通性 ;讨论了两种类型的局部连通性 :局部k-维子立方体连通性和局部子立方体连通性 。
2.
In this paper,the local-connectivity concept and restricted fault tolerance concept are proposed,the local k-subcube-connectivity and local subcube-connectivity of n-dimensional crossedcube are discussed.
提出了交叉立方体网络的局部连通性和限制容错度概念,讨论了n维交叉立方体的局部k维子立方体连通性和局部子立方体连通性。
5) local connectedness
局部连通性
1.
Based on this work,the local connectedness of L-pre-topological spaces is defined and some characterizations of such spaces are given.
在L-闭包空间的连通性基础上定义了L-预拓扑空间的局部连通性,并给出了局部连通的L-预拓扑空间的等价刻画,然后讨论了局部连通L-预拓扑空间的一些性质。
2.
In this paper, we present some characterizations of connectedness and introduce local connectedness in L-fuzzy topological spaces.
本文在L—fuzzy拓扑空间中给出了这种连通性的几种刻划,并引入了L—fyzzy拓扑空间的局部连通性。
6) δ-connectedness
δ-连通性
1.
δ-connectedness in L-topological spaces;
L-拓扑空间δ-连通性的可积性
2.
In this paper,we introduce Fanji theorem On L-Fuzzy δ-connectedness by means of δ-remote neighborthoods.
本文利用闭远域给出了L-拓扑空间δ-连通性的樊畿定理型刻画。
补充资料:局部
一部分;非全体:~麻醉 ㄧ~地区有小阵雨。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条