1) linearly locally connected
线性局部连通
2) linearly locally connected domain
线性局部连通域
1.
The main purpose of this paper is to study the relation among a John domain,a uniform domain and a linearly locally connected domain.
本文研究了∫ΩBn中的John域与一致域和线性局部连通域的关系。
3) linearly connected set
线性局部连通集
4) local connectivity
局部连通性
1.
This paper first presents two different mechanisms maintaining local connectivity AODV routing protocol:LL mechanism based on link layer feedback information and Hello mechanism of network layer,and compares the performance of AODV routing protocol under these two mechanisms through NS2.
针对AODV路由协议的两种局部连通性维护机制进行研究:链路层反馈信息的LL机制和网络层Hello机制,并通过NS2对2种不同机制下的AODV路由协议性能进行比较。
2.
In this paper, based on the theory of connectivity of filled Julia Setsfor even quartic polynomials, and local connectivity of Julia sets, connectivity offilled Julia sets for a class of quartic polynomials are concerned.
本文在Julia集的局部连通性和偶四次多项式Julia集的连通性理论的基础上,讨论了一类四次多项式填充Julia集的连通性。
5) local-connectivity
局部连通性
1.
We introduce a new and natural concept of fault tolerance for hypercube networks: local-connectivity.
该文提出了容错超立方体网络的一个很自然的新概念 :局部连通性 ;讨论了两种类型的局部连通性 :局部k-维子立方体连通性和局部子立方体连通性 。
2.
In this paper,the local-connectivity concept and restricted fault tolerance concept are proposed,the local k-subcube-connectivity and local subcube-connectivity of n-dimensional crossedcube are discussed.
提出了交叉立方体网络的局部连通性和限制容错度概念,讨论了n维交叉立方体的局部k维子立方体连通性和局部子立方体连通性。
6) local connectedness
局部连通性
1.
Based on this work,the local connectedness of L-pre-topological spaces is defined and some characterizations of such spaces are given.
在L-闭包空间的连通性基础上定义了L-预拓扑空间的局部连通性,并给出了局部连通的L-预拓扑空间的等价刻画,然后讨论了局部连通L-预拓扑空间的一些性质。
2.
In this paper, we present some characterizations of connectedness and introduce local connectedness in L-fuzzy topological spaces.
本文在L—fuzzy拓扑空间中给出了这种连通性的几种刻划,并引入了L—fyzzy拓扑空间的局部连通性。
补充资料:局部连通连续统
局部连通连续统
locally connected continuum
局部连通连续统【l优心y戊.脸的ed切“加.口.;加以几研。eaa3.诚.oT恤y外,」 一个连续统,它是局部连通空间(】以川ly coIL以戈IedsPace),局部连通连续统的例子有n维立方体,n=O,l,…,1刃七鱿立方体(Hilbertcube),和所有介-xo肋.立方体(T正honov CUbe),函数 ,一sin上.0<二簇1. X的图象和区间I={(0,y):一1镬夕簇l}的并集给出了(在I的点上)不是局部连通的连续统的例子.可度量化连续统是局部连通的,当且仅当它是Jo攻恤n意义下的曲线(见线(曲线)(h茂(Cun尼))).任何可度量化局部连通连续统都是道路连通的(见道路连通空间(path一conn以众沮sPaCe)).此外,这种连续统K的任意不同两点都包含于K中一条简单弧上. B.A.nac‘HK佃撰白苏华、胡师度译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条