1) Rough subgroup
粗子群
1.
Next, rough sets in a group have been studied and the concepts of Rough subgroups, Rough normal subgroups been first introduced.
接着,他又研究了群中的粗糙集,首次提出了粗子群和粗正规子群的概念,证明了在群中一固定正规子群所决定的同余关系下,子群的粗糙集是子群,正规子群的粗糙集是正规子群。
2) rough subgroups
粗糙子群
1.
The concepts of rough subgroups and rough normal subgroups was raised first by Kuroki N, but only a few studies on homomorphism issues were made.
KurokiN首次提出了粗糙子群、半群中的粗理想等概念 ,但对有关同态问题研究不多 。
2.
In the paper,Rough subgroups and Rough normal subgroups in a Group are further considered.
本文继续研究了群中的粗糙子群和粗正规子群。
3) rough subsemigroup
粗子半群
4) upper rough sub-groupoid
上粗子广群
1.
Right involution groupoid′s upper rough sub-groupoid and upper rough ideal;
右对合广群中的上粗子广群与上粗理想
5) rough normal subgroups
粗正规子群
1.
The concepts of rough subgroups and rough normal subgroups was raised first by Kuroki N, but only a few studies on homomorphism issues were made.
文章在KurokiN定义的粗糙子群和粗正规子群意义下 ,进一步讨论了群中的粗糙集的同态问题 。
2.
In the paper,Rough subgroups and Rough normal subgroups in a Group are further considered.
本文继续研究了群中的粗糙子群和粗正规子群。
6) upper rough subgroup
上粗糙子群
补充资料:单参数子群
单参数子群
one-parameter subgroup
单参数子群〔泄·脚.”州甘,魄”甲;呱”ou叩明eTp”-业一no月rpy,aJ,赋范域K上球群G的 域K的加法群到G的解析同态,即解析映射献K~G,满足 。(s+r)二:(s):(t),s,t〔K.这个同态的象是G的子群,也称为单参数子群.如果K二R,则由同态献K~G的连续性可推出它是解析的.如果K=R或C,则对于任意G在点e处的切向量X‘双G,存在唯一的单参数子群献K~G以X作为其在点t=O处的切向量.这里,(t)=cxp tX,作K,Cxp:兀G~G是指数映射(expo理而a】mapp川g).特别地,一般线性群(罗璐阁址篮翔比gro叩)G”GL(n,K)的任一单参数子群形如 ·‘亡,一p‘X一。氰告:·x:如果G是一个具有双边不变的伪Rlerr.nn度量或仿射联络的实L记群,则G的单参数子群是通过单位元e的测地线.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条