说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 粗糙正规子群
1)  Rough Normal Groups
粗糙正规子群
2)  Fuzzy Rough Normal Subgroups
模糊粗糙正规子群
3)  anti-fuzzy rough normal subgroups
反模糊粗糙正规子群
1.
The concepts of anti-fuzzy rough subgroups and anti-fuzzy rough normal subgroups were first given.
提出群中的反模糊粗糙子群和反模糊粗糙正规子群的概念,证明反模糊子群的粗糙集是反模糊子群,反模糊正规子群的粗糙集是反模糊正规子群。
4)  rough normal subgroups
粗正规子群
1.
The concepts of rough subgroups and rough normal subgroups was raised first by Kuroki N, but only a few studies on homomorphism issues were made.
文章在KurokiN定义的粗糙子群和粗正规子群意义下 ,进一步讨论了群中的粗糙集的同态问题 。
2.
In the paper,Rough subgroups and Rough normal subgroups in a Group are further considered.
本文继续研究了群中的粗糙子群和粗正规子群。
5)  rough subgroups
粗糙子群
1.
The concepts of rough subgroups and rough normal subgroups was raised first by Kuroki N, but only a few studies on homomorphism issues were made.
KurokiN首次提出了粗糙子群、半群中的粗理想等概念 ,但对有关同态问题研究不多 。
2.
In the paper,Rough subgroups and Rough normal subgroups in a Group are further considered.
本文继续研究了群中的粗糙子群和粗正规子群。
6)  upper rough subgroup
上粗糙子群
补充资料:正规子群


正规子群
normal srihgroqi

  正规子群f.川口日,鲍”,;”o州a刀研‘‘举月“犯月‘],正规除子(加m司divisor),不变子群(访珑币田吐sub-罗〕uP)群G的子群H,使得G模H的左分解与右分解相同.换言之,对于任意元素a6G,陪集aH和Ha(作为集合)相等.这时亦称H在G中正规,记作H且G:如果还有H笋G,则记作H阅G.子群H在G中正规当且仅当它包含其任意元素的所有G共辘(见共辘元(conju即把日翻笠nis)),即H“住H.正规子群还可以定义为与其所有的共扼都相等的子群,因而也被称为自共扼子群(货扩·。功火势忱subgro叩). 对于任意同态(hOIno加甲恤m)州G~G’,G中被映成G’的单位元的全体元素组成的集合K(即同态毋的核(kenle!of血加伽曲印比m))是G的一个正规子群.反之,G的任一正规子群都是某个同态的核.特别地,K是映到商群(q叩血ntgro叩)G/K的自然同态的核. 对于任意正规子群的集合,它们的交仍是正规的,由G的任意一族正规子群生成的子群仍在G中正规.0.A.物a,叱a撰【补注】群G的子群H是正规的,如果对所有的g‘G有g一’Hg=H,或者等价地,其正规化子N。(H)=G,见子集的正规化子(non工以止况r of a suh记t).正规子群亦称为不变子群(运论由以su地”叩),因为它在G的内自同构〔~auto伽rp比m)x巨尸=g一,xg(g‘G)下是不变的.在全体自同构下不变的子群称为全不变子群(蒯y一访招山ntsu地加uP),或者特征子群(d朋沈施加su琢ouP).在全体自同态下不变的子群称为全特征子群(刘y‘玩‘‘泊由tic su地阳叩).【译注】有的书将全体自同态下不变的子群称为〔完)全不变子群,而在全体自同构下不变的子群称为特征子群,如见[AI],[BI].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条