1) Generalized Peterson graph
广义Peterson图
2) general Mycielski graphs
广义Mycielski图
1.
On the adjacent vertex-distinguishing incidence coloring of general Mycielski graphs;
关于图的广义Mycielski图的邻点可区别关联着色
2.
Adjacent vertex distinguishing total coloring of path's general Mycielski graphs
路的广义Mycielski图的邻点可区别的全染色
3.
Let G be a simple graph,M_n(G) is called a general Mycielski graphs of G if V(M_n(G))={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…;v_(n1),v_(n2),…,v_(np)};and E(M_n(G))=E(G)Y{v_(ij)v_((i+1)k)|v_(0j)v_(0k)∈E(G),1≤i,j≤p,i=0,1,…,n-1},where V(G)={v_(0i)|i=1,2,…,p}.
设G是简单图,V(Mn(G))={v01,v02,…,v0p;v11,v12,…,v1p;…;vn1,vn2,…,vnp};E(Mn(G))=E(G)∪{vijv(i+1)k|v0jv0k∈E(G),1≤i,j≤p,i=0,1,…,n-1},则Mn(G)称为G的广义Mycielski图,其中,V(G)={v0i|i=1,2,…,p}。
4) generalized De Bruijn graph
广义DeBruijn图
5) general icon
广义图标
6) general edge graph
广义边图
1.
For any weighted graph G=(V,E), it is firstly converted into its general edge graph G′=(V′,E′) through mapping from edges to ver.
对于任一赋权图G=(V,E),首先通过边到点映射把它转换为广义边图G′=(V′,E′)。
补充资料:广义
范围较宽的定义(跟‘狭义’相对):~的杂文也可以包括小品文在内。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条