1) Generalized Petersen graph
广义Petersen图
1.
Incidence chromatic number of several generalized Petersen graphs;
若干广义Petersen图的关联色数
2.
G(2m+1,m)is a class of generalized Petersen graph.
对于广义Petersen图G(2m+1,m),当m≡1,4(mod 6),给出了最大亏格的表达式,对其余情形,给出了不可定向强最大亏格的上界和下界。
3.
It invests all 3-regular graphs with order at most 18, all 3-regular generalized Petersen graphs with order at most 30, all 3-regular graphs with maximum girth and order from 20 to 30 , some random 3-regular graphs with order from 20 to 30, and all Circulant Graphs Cn(l,k) with order at most 18.
通过研究n≤15的所有三正则的广义Petersen图P(n,k),n≤18的所有三正则图,20≤n≤30的随机三正则图与具有最大围长的三正则图,n≤18的所有循环图C_n(1,k),本文得到如下规律:对于给定的顶点数n(n≤18),具有最大围长的三正则图的平均交叉数大于所有三正则图的平均交叉数。
2) generalized Petersen graphs
广义Petersen图
1.
On the adjacent vertex-distinguishing total coloring of some generalized Petersen graphs;
若干广义Petersen图的邻点可区别全染色
2.
The Domination Parameters of Generalized Petersen Graphs and Circulant Graphs;
循环图和广义Petersen图的支配参数
3.
An upper bound of domination number of generalized Petersen graphs P(m,2) (m is even) is obtained in this paper .
广义Petersen图是一类重要的并被广泛研究的互联网络。
3) generalized Pertersen graphs
广义Petersen图
1.
Extensibility of generalized Pertersen graphs;
广义Petersen图的可扩性
4) petersen graph
Petersen图
1.
Anti-Ramsey number of Petersen graph
Petersen图的反Ramsey数
2.
A special graph is formed from Petersen graph and its edge chromatics number is turned out to be 7.
从Petersen图出发,找到一个图形并证明其边色数为7。
3.
Taking advantage of the simple topology of ring,short diameter of Petersen graph,and high connectivity of crossed-cube,the authors has proposed a new type of interconnected network: RCP(n)(Ringed Crossed-Cube Petersen),and made a research on its structural characteristics.
利用环的简单扩展性,Petersen图的短直径与交叉立方体节点的高可连接性,提出了一种新型互联网络RCP(n)(R ingedC rossed cube Petersen),并对其结构特性进行了研究。
5) the Petersen graph
Petersen图
1.
We show that if Σ(M_4)≥2n+3 for all 4-matchings M_4 of G, then either G is collapsible ,or G is the Petersen graph.
设G是阶为n的3-边连通简单图,M4是G的一个4-匹配,设Σ(M4)表示和M4关联的8个顶点的度数和,本文证明了:若对G的每个4-匹配M4有,Σ(M4) 2n+3,则G是可折的或者G是Petersen图。
6) general Mycielski graphs
广义Mycielski图
1.
On the adjacent vertex-distinguishing incidence coloring of general Mycielski graphs;
关于图的广义Mycielski图的邻点可区别关联着色
2.
Adjacent vertex distinguishing total coloring of path's general Mycielski graphs
路的广义Mycielski图的邻点可区别的全染色
3.
Let G be a simple graph,M_n(G) is called a general Mycielski graphs of G if V(M_n(G))={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…;v_(n1),v_(n2),…,v_(np)};and E(M_n(G))=E(G)Y{v_(ij)v_((i+1)k)|v_(0j)v_(0k)∈E(G),1≤i,j≤p,i=0,1,…,n-1},where V(G)={v_(0i)|i=1,2,…,p}.
设G是简单图,V(Mn(G))={v01,v02,…,v0p;v11,v12,…,v1p;…;vn1,vn2,…,vnp};E(Mn(G))=E(G)∪{vijv(i+1)k|v0jv0k∈E(G),1≤i,j≤p,i=0,1,…,n-1},则Mn(G)称为G的广义Mycielski图,其中,V(G)={v0i|i=1,2,…,p}。
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条