2) joint flexibility
节点柔性
1.
Based on the semi-experience and semi-theory formula,the calculation methods of the T-type rigid connection joints in circular tube structure and the effects of joint flexibility on the structure system are presented.
利用半经验半理论公式,介绍了圆管结构T形相贯刚接节点的计算方法和节点柔性对整个结构体系分析的影响。
3) flexible node
柔性节点
1.
The nonlinear dynamic response of frames with flexible nodes is analyzed by using a four parameters Richard model to simulate the nonlinear moment and rotation relationship of the nodes and Masing rule to simulate the unloading and reloading seismic behavior.
采用四参数Richard模型和Masing法则来模拟框架结构柔性节点非线性弯矩-转角关系的卸载和再加载部分,对柔性节点框架结构的非线性动力反应进行分析。
4) convex point
凸性点
1.
we prove the existence of x1,x2 when ζ is convex point.
本文给出拉格朗日定理的一种新的证明方法以及与拉格朗日定理相关的问题:对于y=f(x),x∈(a,b),是否对任意的ζ∈(a,b)都存在x1,x2∈(a,b),使f',(ζ)=x2-x1/f(x2)-f(x1)?本文讨论并证明了ζ为凸性点时,上述x1,x2存在。
5) convexity point
凸性点
1.
It is proved that if ξ is a convexity point,one can get positive answer to the above question,which is an improvement of previous work.
Polya曾提出并否定回答了与 L agrange中值定理有关的问题 :对于 y=f( x) ,x∈ ( a,b)是否对任意的 ξ∈ ( a,b)都存在 x1,x2 ∈ ( a,b) ,x1<ξ
6) vertices convexity-concavity
顶点凹凸性
补充资料:柔性
1.柔顺之性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条