1) indefinite quasilinear equations
不定的拟线性椭圆方程
1.
In chapter two, we are devoted to study a problem for a class of indefinite quasilinear equations.
在第二章中,考虑一类不定的拟线性椭圆方程问题其中七∈R,且p≥2,λ∈R。
2) quasilinear elliptic equation
拟线性椭圆方程
1.
Positive solution to a class of quasilinear elliptic equation on;
关于一类拟线性椭圆方程正解的存在性问题
2.
The nonexistence of entire solutions for a class of quasilinear elliptic equation
一类拟线性椭圆方程整体解的不存在性
3.
This paper investigates N-dimensional singular, quasilinear elliptic equations of the form△u=f(x,u,▽u)u-β, x∈RN and gives some sufficient conditions such that the equations have infinitely many entire solutions each of which is bounded and positive.
本文研究形如△u+f(x,u,▽u)u-β=0,x∈RN(N≥3)的奇异拟线性椭圆方程的正整体解,给出了该类方程具有界的正整体解的若干充分条件。
3) nearlinear overdetermined elliptic equation system
拟线性超定椭圆型复方程组
4) quasilinear elliptic systems
拟线性椭圆型方程组
1.
By studying the existence of minimal points of the energy functional to a class of quasilinear elliptic systems,the uniform boundness of weak solutions for the elliptic problems with variable boundary data in a suitable trace space was given.
研究了具有变分结构的拟线性椭圆型方程组能量泛函的极小点的存在性,得到了椭圆问题弱解的一致有界性,结合集合收敛的意义,推广了半线性椭圆型方程组弱解对边值的稳定性结果。
2.
Some quasilinear elliptic systems are investigated in this paper.
本文讨论几类拟线性椭圆型方程组正解的存在性,多解性和不存在性,我们在第二章研究p-Laplacian方程组的径向正解的存在性,其主要方法是细致的先验估计和拓扑度理论,并用两次同伦映射将问题简单化。
5) quasilinear elliptic equation
拟线性椭圆型方程
1.
CHOQUARD-PEKAR problem for a class of quasilinear elliptic equations;
一类拟线性椭圆型方程的CHOQUARD-PEKAR问题
2.
A priori estimates of solutions for a quasilinear elliptic equation;
一类拟线性椭圆型方程解的先验性估计
3.
In this paper, we give the existence result of solutions for the quasilinear elliptic equation, -Δpu=|u|p*-2u+a(x)|u|p-2u+f(x,u), x ∈ Ω (p* = Np/(N-p), 1 < p < N) under the boundary condition with equivalued-value surface, where Ω is a bounded smooth domain in RN(N ≥ 3).
本文利用临界点理论给出了RN(N≥3)中有界光滑区域上的拟线性椭圆型方程-△pU=|u|p*-2u+a(x)|u|p-2u+f(x,u),X∈Ω(P*=Np/(N-p),1
6) Quasilinear Elliptic equations
拟线性椭圆型方程
1.
The Harnack inequality for generalized solutions of Quasilinear Elliptic equations in anisotropic Sobolev space;
各向异性拟线性椭圆型方程非负广义解的Harnach不等式
2.
In this paper,a set of necessary and sufficient conditions for the exlStence of positive solutions of quasilinear elliptic equations in the plane are obtained in terms of the Schauder-Tychonov fixed point theorem.
利用Schauder-Tychonoff不动点定理,证明了平面上两类拟线性椭圆型方程的正解存在性,得到了正解存在的一组充要条件,同时部分地回答了KusanoT。
3.
This paper aims at studying the boundary value for second order quasilinear elliptic equations with nonlinear boundary condition in exterior domain.
研究在外部区域中拟线性椭圆型方程,具有非线性边界条件的边值问题。
补充资料:不定
【不定】
心所名。所谓不定,是说这四种法,可以成就善,也可以成就恶,故曰不定。
一、悔,悔者追悔,也就是事后生悔,如作了善事而后悔则属恶,作了恶事而后悔则属善,故列入不定;
二、眠,即睡眠,若睡眠是为了调摄身心,恢复体力,便是善,若为了贪睡,或昼夜颠倒,耽误正业,便是恶;
三、寻,寻者寻求事理,若想善便是善,若想恶便是恶;
四、伺,寻是粗想,伺是细想,伺察事理叫做伺,若细想为善便是善,细想为恶便是恶。
心所名。所谓不定,是说这四种法,可以成就善,也可以成就恶,故曰不定。
一、悔,悔者追悔,也就是事后生悔,如作了善事而后悔则属恶,作了恶事而后悔则属善,故列入不定;
二、眠,即睡眠,若睡眠是为了调摄身心,恢复体力,便是善,若为了贪睡,或昼夜颠倒,耽误正业,便是恶;
三、寻,寻者寻求事理,若想善便是善,若想恶便是恶;
四、伺,寻是粗想,伺是细想,伺察事理叫做伺,若细想为善便是善,细想为恶便是恶。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条