说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵方程组问题
1)  Matrix equation problem
矩阵方程组问题
2)  matrix inverse problem
矩阵方程问题
3)  Constrained matrix equation problem
约束矩阵方程问题
1.
The constrained matrix equation problem is to find the solution of a matrix equation in a constrained matrix set.
约束矩阵方程问题就是在满足一定约束条件的矩阵集合中求矩阵方程的解的问题,它是近年来数值代数领域中研究和讨论的重要课题之一,在结构设计,系统识别,结构动力学,自动控制理论,振动理论等领域都具有广泛的应用。
2.
The constrained matrix equation problem is to find a solution for the matrix equation in a constrained matrix set.
约束矩阵方程问题是在满足一定约束条件的矩阵集合中求矩阵方程解的问题。
4)  matrix equations
矩阵方程组
1.
Solutions of a class matrix equations and its optimal approximation;
一类矩阵方程组的求解问题及其最佳逼近
2.
The reflexive matrix solution of the matrix equations is solved.
求矩阵方程组AiXBi+CiXDi=Fi(i=1,2)的自反矩阵解。
3.
This paper concluded a general matrix equations set from the bending momentequation of beam.
通过梁的弯矩方程推导出解等截面静不定梁的通用矩阵方程组,适用于求解各种类型的静不定梁的约束反力和弯曲变形,且易于程序化和计算机处理。
5)  Matrix equation
矩阵方程组
1.
This paper establishes an iterative method for solving the consistent set of matrix equations A 1XB 1=D 1,A 2XB 2=D 2.
给出了求解矩阵方程组A1XB1=D1,A2 XB2 =D2 的迭代法 。
6)  system of matrix equations
矩阵方程组
1.
The solution to system of matrix equations on real quaternion division algebra
实四元数体上的矩阵方程组的解
2.
Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered.
给出了体上的矩阵方程组 [AmnXnn=Amn,BsnXnn=Osn]有次自共轭解和斜亚半正定解的充要条件及其通解表达式 。
3.
n this paper,we define a type of generalized inverse of a matrix over an arbitrary skewfield,and give necessary and sufficient conditions for the solvability of the system of matrix equations overan arbitrary skew fieldThe distinct expressions of the general solutions of the system are also found.
定义了任意体上矩阵的一种广义逆,解决了任意体上的矩阵方程组的有解判定、解的性质及其通解的显式表示等问题,从而使通常的投影矩阵在任意体上得到了进一步的推广。
补充资料:矩阵表示问题


矩阵表示问题
representation of matrices, problem of

或Problenl of Prese”tation of matrices;npe及cTa.”-MocT“M盯p“”nPo6几eMa] 是否能够提出一个统一的一般方法(一个算法(al-即巧山m”,对于任意一组整数上的矩阵U,U,,…,U;来说,在有限步骤内,给出矩阵U能否由矩阵U,,‘·’,U,用乘法表示出来的答案.在U,U;,‘二,U。都是同阶方阵的情形最令人感兴趣.矩阵表示问题的这种陈述方式称为一般的(general).固定矩阵。,,…,u;而使矩阵u变动就得到琴呼寿那妙邵分j可题(part诫Pmbkm of presentation of tnatrices).解出一般陈述的算法也解出了所有部分问题,因为要证实一般陈述的不可解只需提出至少一个不可解的部分问题即可. 矩阵表现问题是代数特征的第一算法问题(见算法问题(司即石仇面c Prob1On”之一,它的不可解性已被证实、最早是A A.MaPK曲证明了对于n》6,可以构造一个含有91个n阶矩阵的系统,使得相应的部分问题不可解,即没有算法(在这个词的确切意义下)来辨别任意一个n阶矩阵是否可以由这一系统来表示(见[11,f21).后来(见t3])这一系统中矩阵的个数被减少到23个,并且证明了,在这个系统的构造里适当地复杂化,条件”)6可以减弱到n)4.对于任意n)6来说,可以构造一个具体的系统,包含12个n阶矩阵,具有不可解的部分问题(见[4])·适当地固定U并且变动U,,…,U。,一般陈述的不可解性已对n二3被证明(见【5」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条