1) generalized asymptotically quasi-nonexpansive mappings
广义渐近拟非扩张型映射
2) generalized asymptotically quasi-nonexpansive type mapping
广义渐近拟非扩张型映象
1.
The purpose of this paper is to study the strong convergence of a generalized asymptotically quasi-nonexpansive type mapping in the non-empty closed and convex subset in Banach spaces,and to give some necessary and sufficient conditions for the modified Ishikawa iterative sequence with errors to converge strongly to a fixed point of the generalized asymptotically quasi-nonexpansive type mapping.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)<∞,又设F(T)有界,且T在F(T)中的点处一致连续。
3) Nonself generalized asymptotically quasi-nonexpansive mappings
非自广义渐进拟非扩张映射
4) Total asymptotically quasi-nonexpansive mappings
全渐近拟非扩张映射
5) non-self asymptotically quasi-nonexpansive-type mapping
渐近拟非扩张型非自映射
1.
This paper aims to introduce the concept of non-self asymptotically quasi-nonexpansive-type mappings and to study the iterative sequence(1.
介绍了渐近拟非扩张型非自映射的概念,在Banach空间研究了迭代序列(1。
6) asymptotically quasi-nonexpansive type mapping
渐近拟非扩张型映象
1.
The strong convergence of Ishikawa iterative sequences for asymptotically quasi-nonexpansive type mappings;
渐近拟非扩张型映象的Ishikawa迭代序列的强收敛性
2.
In the paper,we obtain some iterative approximation theorems of fixed points for asymptotically quasi-nonexpansive type mapping and asymptotically nonexpansive type mapping with error member in uniformly convex Banach space without the con- dition"for ■ε>0,■n_0∈N_+,■n≥n_0 and ■x∈D,suth that‖T~nx-T~(n+1)x‖<ε.
本文在去掉条件"T在D上一致渐近正则"的情况下,在一致凸Banach空间中给出了几个渐近拟非扩张型映象和渐近非扩张型映象不动点的迭代逼近定理。
3.
This paper studied the iterative approximation problem of fixed points for asymptotically quasi-nonexpansive type mappings with mixed errors in uniformly convex Banach space.
研究了一致凸Banach空间中渐近拟非扩张型映象不动点具混合误差的迭代逼近问题,改进和推广了相关文献的结果。
补充资料:扩张映射
扩张映射
expanding mapping
【补注]Y系统在西方文献中通常称为AHocoB系统(A阳sovs岁ton).扩张映射【e%卿喇吨n.跳那嗯;paeT,roaa啊ee oTo6Pa-袱eH“e」 一个由闭流形M到它自身上的可微映射f,在其作用下所有切向量的长度(在某种,因而在任何R记-n必n刀度量的意义下)依指数速率增长,即存在常数C>0与义>1,使对一切X任TM与一切n>0, {ITI,(X){I)C又nt}X!1.此概念也有不带可微性条件的变形,它能概括许多以前研究过的一维情形的例子作为特例.扩张映射的性质类似于y系统(Y一s那tem)的性质,并且部分性质甚至还简单些(例如,C,类的扩张映射恒有作为正密度用局部坐标定义的有限不变测度).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条