1) Non-random missing
非随机缺失
2) missing at random
随机缺失
1.
We propose a local quasi-likelihood weighted estimator for generalized semiparametric models when the Covariates are missing at random.
在协变量随机缺失条件下,研究了广义半参数模型的加权拟似然估计方法,给出了未知参数与非参数回归函数的估计。
2.
We develop two local quasi-likelihood imputation estimators for mean in a generalized varying-ciefticient model when response variables are missing at random.
本文在响应变量随机缺失时,给出广义变系数模型中响应变量的2个均值拟似然借补估计。
3.
We develop imputation estimators of mean of responses for semiparametric varying-coefficient model with response variables missing at random.
在响应变量随机缺失时,研究了半参数变系数模型响应变量均值的借补估计。
3) data not missing at random mechanism
数据非随机缺失机制
4) non-random censoring data
非随机删失
1.
Based on the iteration algorithm which is proposed to deal with non-random censoring data in past paper,the data-filling method is modified so that the virtual complete data obtained from the algorithm is much closer to the real complete data in the case of Weibull distribution under type I censoring data.
基于作者曾提出的处理非随机删失数据的迭代算法,针对Weibull分布相同定时截尾型试验数据,通过改变数据的填补方式,在保证由算法所得的参数估计的相合性和不变性的前提下,使得改进后的算法所得的虚拟完全数据更接近于真实的完全数据。
2.
Based on the moment invariance criterion and corresponding algorithm which is proposed to deal with non-random censoring data, in this paper, the consistency of estimator is proved in the case of the Weibull distribution under type I censoring data, through controlling the quartile probability of the data filling algorithm.
利用处理非随机删失数据的矩不变准则及相应算法,本文针对Weibuu分布相同定时截尾型试验数据,通过控制算法中填充数据的分位概率,证明了通过迭代算法所得到的参数估计的相合性。
5) MCAR
完全随机缺失
1.
Empirical Bayes inference for scale parameter of Gamma distribution with MCAR
完全随机缺失机制下伽玛分布中形状参数的经验贝叶斯推断
6) satellite delection
随体缺失
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条