1) random disorder
随机失谐
1.
Due to the wide use of piezoelectric materials and the random disorder in periodic structures which results in the wave localization, it is important to investigate the elastic wave propagation and localization in intelligent band gap materials.
以压电材料为代表的智能材料的广泛应用,以及结构中存在随机失谐时而引起的弹性波局部化现象,使得弹性波在智能声带隙材料中的传播及局部化问题的研究具有重要意义。
2) stiffness random mistuning
随机刚度失谐
3) stochastic resonance
随机谐振
1.
Application of stochastic resonance in signal reception;
随机谐振在信号接收中的应用研究
2.
The phenomenon of stochastic resonance (SR) based on the correlation coefficient in a parallel array of threshold devices is discussed.
基于相关系数讨论了并行阈值阵列中的随机谐振现象。
3.
To discuss further the dependence of stochastic resonance on signals,nonlinear systems and noise,especially on noise,the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information.
为了探讨随机谐振现象的发生对信号、非线性系统和噪音的依赖性,特别是对噪音的依赖性,以互信息量为测度研究了二进制信号在非线性门限阵列的传输问题。
4) failure in random
随机失效
5) missing at random
随机缺失
1.
We propose a local quasi-likelihood weighted estimator for generalized semiparametric models when the Covariates are missing at random.
在协变量随机缺失条件下,研究了广义半参数模型的加权拟似然估计方法,给出了未知参数与非参数回归函数的估计。
2.
We develop two local quasi-likelihood imputation estimators for mean in a generalized varying-ciefticient model when response variables are missing at random.
本文在响应变量随机缺失时,给出广义变系数模型中响应变量的2个均值拟似然借补估计。
3.
We develop imputation estimators of mean of responses for semiparametric varying-coefficient model with response variables missing at random.
在响应变量随机缺失时,研究了半参数变系数模型响应变量均值的借补估计。
6) random failure
随机失败
1.
The robustness of warship combat system network has been discussed in two damage manners: "random failure" and "targeted attack".
采用复杂网络理论,对现代舰艇作战系统网络的鲁棒性进行研究,建立了一般舰艇作战系统网络拓扑图,在此基础上,探讨了舰艇作战系统网络在“随机失败”和“选择性攻击”两种网络损毁方式下的的鲁棒性,提出了一种改善舰艇作战系统网络受到“选择性攻击”时的鲁棒性的方法———“接种”法。
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条