1) gravity flow
重力出水
1.
Comparison of different membrane moulds in membrane bioreactor with gravity flow
不同膜组件应用于重力出水式膜生物反应器的性能比较
2.
There are two sets of membranes moulds to be tested in the subject, and the aim is to improve the traditional membrane bioreactor and constructed a new membrane bioreactor with gravity flow.
本文结合北京市的现实情况和发展需求,以两种不同膜组件为研究对象,研究和探讨两种不同膜组件应用于重力出水式膜生物反应器的可行性。
2) gravity flow
重力出流
1.
A novel membrane bioreactor(MBR) with gravity flow was applied to treat domestic sewage and landfill leachate.
采用新型的重力出流式膜生物反应器(MBR)处理生活污水和垃圾渗滤液,考察了其在长期运行过程中膜通量的变化规律及其影响因素。
2.
The subject of the use of dynamic membrane bioreactor(DMBR)with gravity flow treating domestic sewage can effective save the energy consumption, the use of cheap membrane material in a non-woven fabric membrane to reduce the cost of the membrane and reduce pollution; so the membrane bioreactor for treating the domestic sewage has an important practical significance.
本课题采用自制重力出流式动态膜生物反应器(DMBR),有效节省了能耗;采用廉价的无纺布膜材料降低了膜组件成本;污泥在添加填料的生物反应区进行沉淀降低了膜污染,使该膜生物反应器处理生活污水的研究具有重要的实际意义。
3.
Dynamic membrane bioreactor(DMBR) with gravity flow was used to treat domestic sewage,and the influence of organic load,DO,pH on the pollutant removal and the measures to retard the membrane fouling were discussed.
采用重力出流式动态膜生物反应器(DMBR)处理生活污水,重点探讨了有机负荷、DO、pH等因素对污染物去除效果的影响及延缓膜污染的措施。
3) hydraulic extrusion
水力挤出
1.
Research and application of coal and gas outburst control measure based on hydraulic extrusion in roadway;
煤巷水力挤出防突措施的研究与应用
2.
Protection against outburst mechanism of hydraulic extrusion measure in the front of coal road heading face;
煤巷掘进工作面水力挤出措施防突机理
3.
Aim at the problems of coal and gas outburst,slowness of advancing,malajustment of exploitation and grubbing and strain of production in grubbing work-face,hydraulic extrusion has been applied in Dazhong mine of Anyang.
针对安阳大众煤矿煤巷掘进工作面具有严重突出危险、推进速度缓慢等问题,在掘进工作面试验了水力挤出消突措施。
4) hydraulic screen
水力挤出
1.
The depth of sealing hole is a very important factor in hydraulic screen;according to the condition of Sang Shu-ping coal mine,base the theoretically analyse and though the checkout,make sure the logical depth of sealing hole of hydraulic screen in Sang shu-ping coal mine,good effect was obtained,and carrying out rapid excavation.
水力挤出的封孔深度是影响消突效果的重要因素之一,以理论分析为基础,结合韩城桑树坪煤矿的实际情况,经过实践考察分析,确定了桑树坪煤矿水力挤出的合理封孔深度,取得了明显的效果,实现了安全快速掘进。
5) hydraulic pressing
水力挤出
1.
In order to removing tunneling working surface outburst quickly and effectively,combine the Six Mineral coal beds characteristics,hydraulic pressing are taken to remove outburst measure.
为了快速、有效地消除煤巷掘进工作面的突出危险性,结合六矿煤层赋存特点,采取水力挤出消突措施。
2.
Based on data gained from in - site , ANSYS finite element analysis software is used , numerical value simulation was carried out in stress distribution、mechanics property、 methane removal of coal body which is located in front of drivage face before and after taking hydraulic pressing measures.
以现场实测数据为基础,利用ANSYS有限元分析软件,对水力挤出措施实施前后的掘进工作面前方煤体应力分布、力学性质、瓦斯运移进行数值模拟,研究了水力挤出措施的消突机理。
6) capacity of outlet water
出水能力
补充资料:孔口出流
流经挡水壁上孔口的水流。常见的孔口形状为矩形和圆形。当孔口高度e与孔口水头H(上游水面至孔口中心的高度)之比时为小孔口;当时为大孔口(图1)。当孔壁厚度不影响孔口出流时为薄壁孔口;反之为厚壁孔口。水利工程中常见的闸门下泄流称为闸孔出流(图2)。 为保证闸孔出流,e/H必须小于或等于0.65,否则闸门下缘脱离水面而成为堰流。当下游水位不影响泄流量时为自由出流(图1a、图2a);反之为淹没出流(图1b、图2b)。胸墙挡水时的堰顶溢流和坝体短孔泄流等亦属孔流。孔口自由出流的流量为:
式中A为孔口面积;g为重力加速度;为孔口总水头,其中H为孔口水头,v0为孔口上游行近流速,α为动能校正系数(见水流能量方程);┢=εφ为孔口流量系数,其中ε=Ao/A为孔口收缩系数(Ao为孔口收缩断面C-C的面积),φ为孔口流速系数,与孔口对水流的阻力有关。对于薄壁圆形小孔口,ε=0.63~0.64,φ=0.97~0.98,μ=0.60~0.62。 当下游水位触及孔口底缘时,流态即有改变,下游水位高于孔口上缘时为孔口淹没出流(图1b)。孔口淹没出流的流量为:
式中z为孔口上下游水位差;μs为孔口淹没出流流量系数。
闸孔自由出流的流量为:
式中B为闸孔宽度;e为闸孔高度;为闸孔总水头,H为闸孔水头(上游水面至闸底板的高度);μ=ε′φ为闸孔流量系数;h0=ε′e为闸孔收缩断面C-C的水深。其中为闸孔垂向收缩系数,与有关;φ为闸孔流速系数,与闸孔形式有关。对于宽顶堰(见堰流)上平面闸门下的闸孔:当=0~0.65时,ε′=0.611~0.673,φ=0.85~1.0。
当闸孔下游水深 t大于收缩断面水深ho的跃后水深hc2(见水跃)时为闸孔淹没出流。其流量为:
Qs=σQ
式中Q为H及e值相同时的闸孔自由出流流量;σ为考下游水位影响的闸孔淹没系数,与(t-hc2)/(H-hc2)有关。
参考书目
华东水利学院编:《水力学》,第2版,下册,科学出版社,北京,1983。
武汉水利电力学院编:《水力学》,水利电力出版社,北京,1960。
式中A为孔口面积;g为重力加速度;为孔口总水头,其中H为孔口水头,v0为孔口上游行近流速,α为动能校正系数(见水流能量方程);┢=εφ为孔口流量系数,其中ε=Ao/A为孔口收缩系数(Ao为孔口收缩断面C-C的面积),φ为孔口流速系数,与孔口对水流的阻力有关。对于薄壁圆形小孔口,ε=0.63~0.64,φ=0.97~0.98,μ=0.60~0.62。 当下游水位触及孔口底缘时,流态即有改变,下游水位高于孔口上缘时为孔口淹没出流(图1b)。孔口淹没出流的流量为:
式中z为孔口上下游水位差;μs为孔口淹没出流流量系数。
闸孔自由出流的流量为:
式中B为闸孔宽度;e为闸孔高度;为闸孔总水头,H为闸孔水头(上游水面至闸底板的高度);μ=ε′φ为闸孔流量系数;h0=ε′e为闸孔收缩断面C-C的水深。其中为闸孔垂向收缩系数,与有关;φ为闸孔流速系数,与闸孔形式有关。对于宽顶堰(见堰流)上平面闸门下的闸孔:当=0~0.65时,ε′=0.611~0.673,φ=0.85~1.0。
当闸孔下游水深 t大于收缩断面水深ho的跃后水深hc2(见水跃)时为闸孔淹没出流。其流量为:
Qs=σQ
式中Q为H及e值相同时的闸孔自由出流流量;σ为考下游水位影响的闸孔淹没系数,与(t-hc2)/(H-hc2)有关。
参考书目
华东水利学院编:《水力学》,第2版,下册,科学出版社,北京,1983。
武汉水利电力学院编:《水力学》,水利电力出版社,北京,1960。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条