1) Pitzer electrolyte theory
Pitzer电解质理论
2) Pitzer electrolyte solution theory
Pitzer电解质溶液理论
1.
The exchange isothermal curves of LiNiMn-H in the H+-Li+ system were measured at 15, 25, 35 and 45 ℃ and the average activity coefficients of the electrolyte were calculated using Pitzer electrolyte solution theory.
测定了15、25、35、45℃LiNiMn-H在H+-Li+体系吸附锂的离子交换等温线,并利用Pitzer电解质溶液理论计算出该离子交换体系的活度系数,得到H+-Li+交换的平衡常数Ka,△Gm、△Hm和△Sm等热力学参数。
2.
The activity coefficients were calculated by using Pitzer electrolyte solution theory,other thermodynamic constant such as equilibrium constant K aKH,Δ r Gmθ,Δ r Hmθ and Δ r Smθduring the exchange process were obtained.
测定了15、25、35、45℃下CRYMO-H对H+-K+体系的离子交换等温线,采用Pitzer电解质溶液理论计算出该离子交换体系的活度系数,得到H+-K+交换的平衡常数KaKH、ΔrGmθ、ΔrHmθ和ΔrSmθ等热力学函数。
4) Pitzer theory
Pitzer理论
1.
The liquid-liquid equilibrium(LLE) data for acrylonitrile-water-KF and acrylonitrile-water-K_2CO_3 systems are measured at 40 ℃,a theoretical calculation of LLE data is calculated from the Pitzer theory and the NRTL equation.
测定了丙烯腈-水-氟化钾、丙烯腈-水-碳酸钾体系在40℃时的液-液相平衡数据,用Pitzer理论和NRTL方程对液-液相平衡数据进行了理论计算。
2.
Calculation of liquid-liquid equilibrium data was conducted by using Pitzer theory and UNIQUAC equation based on the equilibrium data of pyridine-water-KF system at 25℃.
测定了吡啶 水 氟化钾体系在25℃时的液液相平衡数据,采用Pitzer理论和UNIQUAC方程对相平衡数据进行了理论计算,结果表明计算值与实验值符合良好。
3.
Pitzer theory and his semi-empirical equation system are the most effective achievements in describing and calculating the chemical equilibrium of multi-component high concentration electrolyte solution.
在描述和计算多组分高浓电解质溶液化学平衡方面 ,Pitzer理论及其半经验方程体系是迄今为止最有成效的成果。
5) Pitzer-Simonson theory
Pitzer-Simonson理论
6) Pitzer's theory
Pitzer 理论
1.
In this paper,the equation of osmotic pressure in Pitzer's theory is successfully applied to the basic transport equations of the preferential sorpti- on-capillary flow model.
在这篇文章中,已将 Pitzer 理论的渗透压公式成功地应用于优先吸附——孔流模型的基本迁移方程组,这实际上是一种对其渗透压计算方法的适宜改进。
补充资料:PI
聚酰亚胺是由4,4’-二氨基二苯醚与均苯四甲酸酐反应先得到高分子量且能溶于极性溶剂的预聚体——聚酰胺酸,然后在高温下脱水环化制得。不溶性聚合物.淡黄色粉末,细度<250um,表观密度0.35。耐高低温,性能优异.在-269~400 ℃范围内保持较高的机械性能,热变形温度360℃(1.82MPa)。使用温度-240~260℃。耐辐射性极好。耐磨性良好,能耐大多数溶剂,但易被浓酸、浓碱水解。在沸水和蒸汽的长时间作用下能被破坏。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条