说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正压缩积分半群
1)  positive contraction integrated semigroup
正压缩积分半群
1.
In chapter four, we get that the operator Q_(l_∞) derivedfrom Q generates a once positive contraction integrated semigroups T(t) on l_∞,and T{t) isintegrated Q -semigroups.
突变分支过程的状态空间是E={0,1,2,…},其转移函数是P(t)={p_(ij)(t);i,j∈E},满足Kolmogorov前向方程:P\'(t)=P(t)Q,其q-矩阵Q=(Q_(ij);i,j∈E)定义为:其中:a>0,d>0本文主要研究突变分支过程Q的性质,尤其是突变分支过程Q在Banach空间l_∞上生成一个正压缩积分半群T(t)的性质。
2)  Postive contraction integrated semigroup
一次正压缩积分半群
3)  Positive once Integrated semigroups with contractions
正的一次压缩积分半群
4)  contraction integrated semigroup
压缩积分半群
1.
In this paper,we give the sufficient and necessary conditions for a general birth,death and catastrophe q-matrix Q generating a contraction integrated semigroup on l∞,and show that Q generates a minimal integrated Q-semigroup T(t) on l∞.
研究了一般突变q-矩阵Q在l∞上生成一个压缩积分半群的充要条件,并且Q可在l∞上生成一最小的积分Q-半群T(t),讨论了T(t)单调的充要条件,给出了T(t)是Feller的充分条件,并讨论了T(t)关于时间t的极限行为。
5)  strong-contraction semigroups
强压缩积分算子半群
6)  Regular Subsemigroup of C(S)_n
压缩正则子半群
补充资料:压缩半群


压缩半群
contraction semi - group

  压缩半群l阴。.川皿se幻ni一g阴p.。留盯碗.国那1小..」 Banach空间E中线性算子的单参数强连续半群(strongly一cont;nuous semi一grouP)T(t),0簇r<的,T(0)=I,并且)T(t)袱成1.在E中稠定的算子A是压缩半群的丰感攀矛(罗nerating operator)(等ha(罗ne-rator))当且仅当又寸所有又>0满足凡11e一吉田(Yosida)条件: {、、、一、,)1{、、专换言之,一个稠定算子A是一个压缩半群的生成元,当且仅当A是个极大的耗散算子(dissiPativeoperator). 肠lbert空间中的压缩半群已被详细地研究过刁天缩半群的特殊形式是等砂至半群(serni .group of isome-tr,es)({!Tx{{二{{大},),酉半群(unjatry semi一goups)汀’飞,)二了一’(r)),自伴半群(self一adjoint semi一脚u娜)(T’(t)=T(t))以及正规半群fnormal semi一gou声)“产(:)T(r)二了飞r口’‘(;)).代替生成元A而使用其Cayley变换B=(A十八(A一I丫’(今牛率冬(哪ner“tor))有时是方便的.结果是,一个半群是等距半群、酉半群自伴半群或正规半群,当且仅当上生成元分别是等距算子、酉算子、自伴算子或正规算子 一个扭缩半群称为完全非酉的扣com Pletelynon一unitary),如果它在任何不变子空间中的限制不是酉的.对于一个完全非酉的半群及任何x,夕6H,有(T(t)x.夕)一O(当t一伪).为了‘一个压缩半群是完全非酉的,只须它是稳定的,即对x〔11,当f,优时,有{}T(t)x},一0. 对每个压缩半群T(t),有一个到了’(约不变户空间中的正交分解H=H、①从,使得所给半群在月上是酉的,而在HZ上是完全非酉的. 如果T(t)是在比lbert空间H中的一个服缩半群,则有一个包含H作为子空间的更大的巧lbert空间厅,及在万中的酉群u(t)一二<:<沈,使得’r(t)=PU(t)(对t)0),这里尸是H到H上的正交射影.群U(r)称为半群T(‘)的一个曹举琴(uni‘ary dila‘i〔,n)·如果要求万是集合日u(OH(一。:戈 每个等距完全非酉半群同构于LZ(R尸N)上的单侧移位,N为某个适当的空间, 如果T(O是一个完全非酉的压缩半群,U(t)是它的极小酉膨胀,那么在万的某个不变l子空间上(但若乞r(t)是稳定的,则在整个H上),这个群同构于双侧移位的群对于非线性算子的压缩半群,见非线性算子半群(semi一grouP of non一llnea,operators).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条