1) the second order linear (semilinear) difference equation
二阶(半)线性差分方程
2) second order half-linear differential equation
二阶半线性微分方程
1.
By using the iterated integral transformations and generalized Riccati fransformations,some oscillatory criteria for a class of the second order half-linear differential equation with deviating argument are given.
考虑了一类具有连续偏差变元的二阶半线性微分方程,利用积分变换和广义Riccati变换,给出了此类方程的振动准则。
3) Semilinear second order differential equation
半线性二阶微分方程
4) second order linear difference equation
二阶线性差分方程
1.
The paper deals with the oscillation behavior of the following second order linear difference equation Δ 2x n-1 +p nx n=0 , where { p n} ∞ n=1 is a real sequence with p n0 .
讨论二阶线性差分方程 Δ2 xn-1+pnxn=0解的振动与非振动性 ,其中 :pn≥ 0。
6) second order linear matrix difference equations
二阶线性矩阵差分方程
1.
We studied the problem about the solutions of second order linear matrix difference equations AXn+2+BXn+1+CXn=0 and its asymptotic stability.
讨论了二阶线性矩阵差分方程AXn+2+BXn+1+CXn=0的解及其渐近稳定性。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条