1) Hopf-bi-Galois object
Hopf-双Galois对象
2) Hopf-bi-Galois extension
Hopf-双Galois扩张
1.
This paper is devoted totwo aspects: one is the smash product of a semisimple Hopf algebra and its transitivemodule algebra which has a 1-dimensional ideal; the other is faithfully flat Hopf-bi-Galois extensions.
本文主要研究两方面的内容:一方面为半单Hopf代数与其可迁模代数的smash积的结构;另一方面为忠实平坦的Hopf-双Galois扩张。
3) Hopf Galois extensions
Hopf-Galois扩张
4) double Hopf bifurcation
双Hopf分岔
1.
The resonant double Hopf bifurcations and the nonresonant ones exist due to the technological delay τ_1.
发现由于技术时滞τ1的出现,使模型存在着共振和非共振的双Hopf分岔。
2.
The dynamic behavior of a resonant double Hopf bifurcation is examined for a van der Pol-Duffing oscillator with delayed feedback,and the influence on double Hopf bifurcation is investigated with time delay and amplitude variation.
研究时滞反馈van der Pol-Duffing系统的共振双Hopf分岔,讨论时滞量和位移反馈增益变化对双Hopf分岔的影响。
3.
It is found that the excitatory self-connections can lead to non-resonant double Hopf bifurcations since the double Hopf bifurcation disappears without self delayed connecti.
发现如果有兴奋型自连接就会有双Hopf分岔,而没有时滞自连接时双Hopf分岔就会消失,因此自连接引起了双Hopf分岔。
5) double Hopf bifurcation
双Hopf分叉
1.
Study on the simplest normal forms of nonresonant double Hopf bifurcation;
非共振双Hopf分叉系统最简规范形类的研究
2.
In this paper, an analog of the neural network of the fourth order aiming to store the oscillatory memory patterns is designed using the normal form equations for double Hopf bifurcation with two remaining dimensions.
用余维2的双Hopf分叉的规范形方程设计了期望存储振荡型记忆模式的模拟四阶关联神经网络,所设计的网络向量场具有中心对称性。
6) Hopf bimodule
Hopf双模
1.
It is well known that the kG-Hopf bimodule category■s equivalent to the direct product categoryΠ_(C∈K(G))Mkz_(u(C)).
从Hopf quiver出发,借助于右kZ_u(c)-模的直积范畴■ Mkz_(u(C))与kG-Hopf双模范畴kG/kG M kG/kG之间的同构,当G是二面体群D_3时,给出了Hopf路余代数kQ~c的同构分类及其子Hopf代数kG[kQ_1]结构。
2.
Let D2 be a dihedral group and r=sum from C∈K(D_2) to (r_CC) be a ramification of D2, the kD2-actions on the Hopf bimodule kQ1 and the structure of Hopf algebra kD2[kQ1] are presented for ra,rb and rba being nonzero natural numbers.
设r=sum from C∈K(D_2) to (r_CC)为二面体群D2的分歧,给出了当ra,rb和rba均非零时,群代数kD2在Hopf双模kQ1上的模作用以及Hopf代数kD2[kQ1]的结构。
3.
It is well known that the kG-Hopf bimodule category ~(kG)_(kG)M~(kG)_(kG) is equivalent to the direct product category ∏(C∈K(G))M_(kZ_(u(C))), where(K(G)) is the set of conjugate classes in G,u:K(G)→G is a map such that u(C)∈C for any C∈K(G),Z_(u(C))={g∈G|gu(C)=u(C)g} and M_(kZ_(u(C))) denoted the category of right kZ_(u(C)) modules.
从Hopf quiver出发,借助于右kZu(C)-模的直积范畴∏C∈K(G)MkZu(C)与kG-Hopf双模范畴kGkGMkkGG之间的同构,就G为二面体群D2时,给出了Hopf路余代数kQC的同构分类及其子Hopf代数kG[kQ1]的结构。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条