1) Analysis of the "Singularity Theorem"
解读"奇点定理"
2) singularity theorem
奇点定理
1.
The singularity difficulty and the proof of the famous singularity theorems given by Hawking and Penrose in general relativity are introduced.
介绍了广义相对论中的奇点困难和霍金与彭若斯给出的著名的奇点定理的证明。
2.
After discussion on singularity and on thermal property in large scalespace-times, it is pointd out that the singularity theorem results from violation of the generalized third law of thermodynamics.
通过对奇异性和大范围时空热性质的讨论,指出奇点定理是破缺广义热力学第三定律的结果。
3) Decoding Theorem of Conservation of Similar Power
解读拟功率定理
4) Analytic odd point
解析"奇点"
5) theorem of partition
奇点分解
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条