1) And-homomorphism of Groups
群上的逆同态
2) homomorphism on group
群上同态
3) metahomomorphisms on groups
群上亚同态
1.
A necessary condition for metahomomorphisms on groups is given in this paper.
给出了群上亚同态的一个必要条件,又由这一必要条件给出了群上亚同态的一些性质。
4) cohomology of a group
群的上同调
5) cupproduct of thecohomology group
上同调群的上积
6) metahomomorphisms on group
群的亚同态
补充资料:自同态半群
自同态半群
automorphism semi-group
自同态半群【。日朋职神蜘1胭拍~gn月Ip;3职翻叩中翻佣uo二yrpynna] 某对象(赋以某种结构口的集合X)的自同态对于乘法(依次进行变换)运算组成的半群.对象X可以是向量空间、拓扑空间、代数系、图等等;通常把它看成是某范畴(cat咫驹ry)的对象,而通常该范畴中的态射(Ino印hism)是保持口中关系的映射(线性变换或连续变换,同态等).X的全部自同态(即到它的子对象的态射)的集合EndX是X的全部变换的半群几(见变换半群沁田旅几m以tion~~g毛叩”的子半群. 半群EndX可以包含结构a的大量的信息.例如设X和Y分别是除环F和H上的维数)2的向量空间,若它们的自同态(即,线性变换)的半群EndX和EndY同构,就推出X和Y(特别是F和H)同构.某些前序集和格,每个B以〕le环,某些别的代数系都被它们的自同态半群决定到同构.对某些模和变换半群这也是对的.X的类似的信息由EndX的某个真子半群倒,拓扑空间的同胚变换的半群)所负载. 用这种方法,对象X的一些类(例,拓扑空间)可以由它们的部分自同态的半群也即是作为X的子对象的态射的部分变换的半群所刻画.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条