1) Asymptoic Estimations of Finite Sums
有限和的渐近估计
2) Bahadur efficiency
Bahadur渐近有效估计
1.
Based on some smooth conditions, the Bahadur bound for this distribution family is derived, and a definition of Bahadur efficiency is proposed.
基于一定的光滑性假设,得到了这种双边截断分布族的Bahadur界,并因此给出了该分布族中相合估计为Bahadur渐近有效估计的定义。
3) asymptotically efficient estimate
渐近有效估计
1.
In this paper,we discuss the sufficient and complete statistic of negative binomial distribution,and obtain the uniformly minimum variance unbiased estimator with unknown parameter θ through discusslon of cramer Rao inequality and the below bound of the unbiased estimate,it is proved that unique UMVU estinote of the parameter θ is asymptotically efficient estimate.
通过讨论负二项分布族的充分完备统计量 ,可给出未知参数θ的一致最小方差无偏估计 ,并通过Cramer Rao不等式及其无偏估计下界的讨论 ,证明了θ的惟一的UMVU估计是渐近有效估
2.
In this paper,we construct the asymptotically efficient estimates for location parameter θ in the family {1τf(x-θτ)|θ∈R,τ>0
本文对单边截断型分布族{1τ∫(x-θ)τ)dx|θ∈R,τ>0},构造了位置参数θ的一类渐近有效估计和自适应估
6) asymptotic formulae
渐近估计
1.
On the asymptotic formulae of approximation of unbounded continuous functions;
关于无界连续函数逼近的渐近估计
2.
By using multiplier-enlargement,the asymptotic estimation of approximation of unbounded continous functions with positive linear operaters is discussed, with general asymptotic formulae given.
利用扩展乘数法讨论了线性正算子改造为逼近无界连续函数的渐近估计,给出了具有一般性的渐近 公式。
3.
By using of the method of multiplier-enlargement, discusses the asymptotic estimation of approximation for unbounded continuous functions of several variables by linear positive operators defined on k-dimensional Euclidean space, and gives general asymptotic formulae.
利用扩展乘数法讨论了高维欧氏空间上线性正算子改造为逼近多元无界连续函数 的渐近估计,给出了具有一般性的渐近公式。
补充资料:有限
1.有限制;有限度。 2.指数量不多;程度不高。 3.哲学范畴。指有条件的﹑在空间和时间上都有一定限制的﹑有始有终的东西。相对于"无限"而言。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条