说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 谈极限的求法
1)  Solutions to Extreme Limit
谈极限的求法
2)  Algorithms for Double Limit
二重极限的求法
3)  Limit of solution
极限求法
4)  extreme limit high mathematics
常用求极限的方法
5)  Four Methods to Solve the Problems of Limit
四种求极限的方法
6)  On several solutions of limit
求极限的几种方法
补充资料:二重极限


二重极限
double brat

  二,极限[山扣映位抽t;口ao‘。o白。P叭e二] 1)序列的二重极限,二重序列(double涨只u口笼笼)笼、:}(m,”司,2,…}妙俘眼是一个数“,定义如下:对于任何。>0,存在数从,使得对于一切。,n>从,等式 }气。一al<。成立.记作 a“,叭’。二如果对于任何。>0,存在数从,使得对于一切m,n>从,不等式}气。}>。成立,则序列气。以无穷大作为它的极限: 。妙。、,一,.同样,可以定义无穷极限 ,叭气一十的和。叭气。一叭序列的二重极限是在一个集合上的函数的二重极限的特殊情况,即当这个集合是由平面上具有整数坐标的一些点组成时.正如在一般情况那样,序列的二重极限同它的累极限之间存在联系. 2)函数的二重极限是二元函数的极限,定义如下:设函数f(x,刃定义在灭y平面上的集合E上,点(凡,y0)是集合E的一个极限点(见集合的极限点(U而t point ofaset》‘一个数A称为函数f(x,y)在点(x。,y。)上或当(x,夕)~(x。,夕。)时的二重极限,如果对于任何。>O,存在占>O,使得对于一切点(x,力〔E,只要这些点满足不等式 0<}x一凡}<占,0<}y一y0}<占,则不等式 }f(x,y)一A}<“成立.在这种情况下,记作 (:.,忽。,yo,了(x,力一,.函数的二重极限也可以借助于序列的极限来表述: A一、二.,陈。.、,f(x,,),如果对于任何序列 (凡,孔)~(凡,y0), (凡,y0)笋(x",火)任E,n=l,2,…,条件 厩f(xn,劝=A均满足,可以类似地给出当函数的变元趋向于无穷大时函数的二重极限的定义,以及函数的无穷二重极限的定义. 函数在点(凡,y0)上或在的处的二重极限和爪极限(比侧汾囚址垃t)之间存在联系:设凡和y0是实数子集x和y的(有限的或无穷的)极限点,E=X xy.如果对于函数f(x,y),有限的或无穷的二重极限 (二,y陈0’yo)f(x,y)存在,并且对于任何y‘Y,有限的极限 职切“ljmf(x,y) X~三0存在,则累极限 溉煦厂(x,y)一恩,。)存在,并且等于这个函数的二重极限. 利用邻域的概念,可以给出函数的二重极限的下述形式的定义:设a是集合E的极限点(凡,y0)或符号的,在后一情况下集合E是无界的,而A是一个数或符号的,+的,一的之一这时, A一、二.夕悠。,。,f(x,y),如果对于点或符号A的任何邻域亿,存在数或符号a的一个邻域Oa,使得对于一切(x,,)“E门几,(x,,)尹a,条件f(x,y)〔氏成立.采用这种形式,函数的二重极限的定义可以推广应用到下述情况:函数f(x,刃定义在两个拓扑空间X和Y之积上,x‘X,y任Y,而了。,力的值也属于一个拓扑空间. J’I.八.狗即.哪.撰张鸿林译
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条