1) Testimony of inequality
不等式的证明方法
2) proof-methods of inequalities
不等式证明方法
4) inequality proof
不等式证明
1.
This paper illustrates its application in limit,approximate calculation,inequality proof and equality proof and solution skill by giving examples.
Taylor公式在高等数学中占有很重要的地位,它的应用非常广泛,通过举例阐述了其在极限、近似计算、不等式证明、等式证明等方面的应用及解题技巧。
5) testifying inequation
证明不等式
1.
The article brings forward six methods testifying inequation utilizing the knowledge of advanced mathematics and they can benefit in improving students various thinking manner and ability of solving problems.
提出了用高等数学知识证明不等式的六种方法,对提高学生灵活多样的思维方式、提高解决问题的能力有所裨益。
6) automated proving
不等式机器证明
补充资料:不等式证明
不等式的证明,基本方法有
比较法:比较两个式子的大小,求差或求商。是最基本最常用的方法
综合法:用到了均值不等式的知识,一定要注意的是何时等号才成立。
分析法:当无法从条件入手时,就用分析法去思考,但还是要用综合法去证明。两个方法是密不可分的。
换元法:把不等式想象成三角函数,方便思考
反证法:假设不成立,但是不成立时又无法解出本题,于是成立
放缩法:
用柯西不等式证。等等……
高考不是重点,但是难点。
大学数学也会讲到柯西不等式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条