说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 极限方式
1)  Utmost Way
极限方式
2)  explicit expressed performance function
显式极限状态方程
3)  implicit limit state equation
隐式极限状态方程
1.
Based on the weighted linear response surface(WLRS)method,an artificial neural network(ANN) method is presented to analyze the reliability of the implicit limit state equation.
在加权线性响应面法的基础上,提出隐式极限状态方程可靠性分析的神经网络方法。
2.
For the complicated implicit limit state equation,a new algorithm was presented to analyze the reliability sensitivity.
针对复杂隐式极限状态方程,提出了一种新的可靠性敏度分析方法。
4)  implicit limit state function
隐式极限状态方程
1.
An approach assessing the structural reliability by using the least square support vector machine(LS-SVM) is proposed in this paper when implicit limit state functions are normally encountered in the complicated structures.
结果表明,该方法能够评估隐式极限状态方程的结构可靠度,具有较高的计算精度和较好的计算效率。
5)  equal limit loading stretching form
等极限荷载张拉方式
6)  mean square limit
均方极限
1.
This paper introduces the differentiation of the stochastic processes under the meaning of mean square limit, and gives the conclusion that the arbitrary rank derivatives of stationary stochastic processes (if they exist) will still be stationary.
介绍了随机过程在均方极限意义下的可微性概念,并论述了平稳随机过程的任意阶导数(如果存在的话)仍然是平稳随机过程这一结论。
2.
In this paper, we give two definitions of mean square limit of second order moment fuzzy stochastic process, and prove that the two definitions are equivalent, and discuss the properties of mean square limit of second order moment fuzzy stochastic process.
给出了二阶矩模糊随机过程均方极限的两种定义,证明了这两种定义的等价性,并讨论了二阶矩模糊随机过程均方极限的性质。
3.
This paper introduces the concepts of mean square limit and mean square derivative of stochastic processes,obtains the conclusion that the arbitrary order derivative processes of real normal processes(suppose they exist) are also real normal processes.
本文介绍了随机过程均方极限及均方导数的概念,并通过研究得到了实正态随机过程的任意阶均方导数过程(如果存在的话)仍是实正态过程这一结论。
补充资料:架空线状态方程式


架空线状态方程式
tension equation of overhead wire

  ,}okongx一on Zhuongtol于ongehengshl架空线状态方程式(tension叫uationoverhead wire)见架空线力学计算。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条