说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 人脸识别系统研究
1)  Research of Human Face Recognition
人脸识别系统研究
2)  Research of Face Recognition
人脸识别研究
3)  face recognition system
人脸识别系统
1.
In the next place, in order to fulfill the demand of safety-check, checking on work attendance, identity, and so on, a face recognition system is developed independently in this paper.
本文首先对人脸识别算法进行了研究,提出了基于模糊遗传优化支持向量机的人脸识别系统框架;其次,针对目前安检、考勤、身份认定等各方面的需要,自主开发了一套人脸识别系统。
2.
Base on this algorithm cooperate with PCA and ridge regression, we constructed an real-time face recognition system using VC++6.
0以及OpenCV实现了一个实时视频人脸识别系统。
3.
The implemented eye detection codec was also employed in a face recognition system.
人眼检测算法包也被应用于人脸识别系统中。
4)  A Study on Facial Expression Recognition
人脸表情识别研究
5)  A Study of Human Face Recognition
人脸识别技术研究
6)  Research on Face Recognition Algorithm
人脸识别算法研究
补充资料:人脸识别
什么是人脸识别

人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。

人脸识别概述

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。

人脸识别的优势

人脸识别的优势在于其自然性和不被被测个体察觉的特点。

所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的,另外具有自然性的识别还有语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。

不被察觉的特点对于一种识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。

人脸识别的困难

虽然人脸识别有很多其他识别无法比拟的优点,但是它本身也存在许多困难。人脸识别被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一。人脸识别的困难主要是人脸作为生物特征的特点所带来的。人脸在视觉上的特点是:

第一,不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的;

第二,人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。

在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化(inter-classdifference),而称第二类变化为类内变化(intra-classdifference)。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。

人脸识别的技术细节

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。

人脸识别的算法种类

基于人脸部件的多特征识别算法(MMP-PCArecognitionalgorithms)。
基于人脸特征点的识别算法(Feature-basedrecognitionalgorithms)。
基于整幅人脸图像的识别算法(Appearance-basedrecognitionalgorithms)。
基于模板的识别算法(Template-basedrecognitionalgorithms)。
利用神经网络进行识别的算法(Recognitionalgorithmsusingneuralnetwork)。

人脸识别的应用

人脸识别的应用主要有:
·公安刑侦破案:通过查询目标人像数据寻找数据库中是否存在重点人口基本信息。例如在机场或车站安装系统以抓捕在逃案犯。
·门禁系统:受安全保护的地区可以通过人脸识别辨识试图进入者的身份。
·摄像监视系统:在例如机场、体育场、超级市场等公共场所对人群进行监视,以达到身份识别的目的。例如在机场安装监视系统以防止恐怖分子登机。
·网络应用:利用人脸识别辅助信用卡网络支付,以防止非信用卡的拥有者使用信用卡等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条