1) ce and convex loss
不变性与凸损失
2) invexity
不变凸性
1.
Under invexity assumptions,the optimality sufficient condition and the optimality necessary condition were obtained for this class of generalized fractional programming.
建立了一类广义分式规划的一个不完全Lagrange函数,并利用这一函数研究广义分式规划的鞍点最优性准则,在不变凸性假设下,获得了该类广义分式规划鞍点最优性的充分条件和必要条件。
2.
It was discussed that the consistent invexity of K S function which is the key function used by maxinum entropy method in optimization problems solution.
对求解最优化问题的极大熵方法中的关键函数—— K- S函数的一致不变凸性作了讨论 ,得出“K- S函数是一致不变凸的 ,则一定是不变凸的”结论 。
3.
Sufficiency for a class of control problems are proved under generalized invexity assumptions on the functionals.
本文引入了几类广义不变凸性,对一类控制问题,在这些广义不变凸性条件下,讨论了它的Mond-Weir型解的充分性。
3) preinvexity
预不变凸性
1.
A note on criteria for preinvexity;
关于预不变凸性准则的一个注记
4) pseudo-invexity
伪不变凸性
5) quasi-invexity
拟不变凸性
6) generalized type-I invexity
Is类不变凸性
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条