1) fundamental system of function
基本函数系
3) basic library function
基本库函数
4) system of eigenfunctions
本征函数系
1.
There is an important theorem when we study many operators,namely,the necessary and sufficient condition for the existence of a simultaneous system of eigenfunctions of two operators is that they can commutate each other.
在研究多个算符时,有一个非常重要的定理:两个力学量算符能够具有共同本征函数系的充分必要条件是这两个个力学量算符能够互相对易。
5) Bearing line fraction
基本系数
6) B-spline function
基本样条函数
1.
According to the mathematical model of permanent-magnet synchronous-motor(PMSM), a novel fuzzy neural network control method, which was in the construction of B-spline function, was proposed for controlling the speed servo system based on the dynamic model of PMSM.
在分析永磁同步电机(PMSM)数学模型的基础上,建立了控制系统的仿真模型,并提出了一种新型模糊神经网络控制方法:以基本样条函数实现PMSM模糊神经网络速度控制器的设计。
2.
A fuzzy neural network control method, which is in the construction of B-spline function, is proposed for permanent magnet synchronous motor speed servo system based on the dynamic model of PMSM.
文章介绍了以基本样条函数设计永磁同步电动机模糊神经网络速度控制器的方法。
3.
A ccording to the mathematical model of BLDCM,a novel fuzzy neural networkcontrol method,which is in he construction of B-spline function,is proposed for controlling thespeed servo system.
在分析无刷直流电机(BLDCM)数学模型的基础上建立控制系统的仿真模型,提出了用基本样条函数实现BLDCM模糊神经网络速度控制器设计的新方法。
补充资料:热力学函数基本关系式
对于封闭系统,将热力学第一定律与热力学第二定律相结合,可以得到如下一组关系式:
dU=TdS-pdV
(1)
dH=TdS+Vdp
(2)
dA=-SdT-pdV
(3)
dG=-SdT+Vdp
(4)式中U为内能;H为焓;A为亥姆霍兹函数;G为吉布斯函数;S为熵;T为热力学温度;V为体积;p为压力。这一组关系式就称为封闭系统的热力学函数基本关系式。式(1)~(4)只适用于内部平衡且不做非体积功的封闭系统。
利用上述基本关系式的积分,可以求得一个封闭系统经历一个任意可逆过程后状态函数的变化。对于只由两个独立变量便可描述的封闭系统(即没有不可逆的化学变化和相变化的封闭系统),上述基本关系式实际上可看作状态函数U、H、A和G的全微分表达式。无论过程是否可逆,它们的积分都存在,且只由系统的始、终态决定。因此,对这样的系统,不可逆过程的状态函数的变化,也可由上述基本关系式积分求得。
利用封闭系统的热力学基本关系式,还可以推导出许多重要的关系式。例如,从式(1)~(4)可导出:
T=(дU/дS)V=(дH/дS)p (5)
p=-(дU/дV)S=-(дA/дV)T (6)
V=(дH/дp)S=(дG/дp)T (7)
S=-(дA/дT)V=-(дG/дT)p (8)
利用数学上的全微分性质,还可由式(1)~(4)导出:
(дT/дV)S=-(дp/дS)V (9)
(дT/дp)S=(дV/дS)p (10)
(дS/дV)T=(дp/дT)V (11)
(дS/дp)T=-(дV/дT)p (12)式(9)~(12)称为麦克斯韦关系式组。利用此关系式,可把一些实验上难以测量的量〔如(дS/дp)T〕转化为易于测量的量〔如(дV/дT)p〕。
利用麦克斯韦关系式,可从式(1)和(2)导出:
(дU/дV)T=T(дp/дT)V-p (13)
(дH/дp)T=-T(дV/дT)p+V (14) 式(13)、(14)描述了系统的内能U和焓H随系统的体积和压力的变化关系,通常称为热力学状态方程。
对化学组成可变的均相系统,式(1)~(4)可改写为:
(15)
(16)
(17)
(18)
式(15)~(18)称为开放系统的热力学函数基本关系式。式中μB为系统中物质B的化学势;dnB为物质B的物质的量的微小变化值。
如果系统在变化过程中除体积功和化学功外还有其他功(如电、磁、表面功等),则热力学函数基本关系式的形式为
(19)
(20)
(21)
(22)
式中W ′为除体积功以外的其他功。
dU=TdS-pdV
(1)
dH=TdS+Vdp
(2)
dA=-SdT-pdV
(3)
dG=-SdT+Vdp
(4)式中U为内能;H为焓;A为亥姆霍兹函数;G为吉布斯函数;S为熵;T为热力学温度;V为体积;p为压力。这一组关系式就称为封闭系统的热力学函数基本关系式。式(1)~(4)只适用于内部平衡且不做非体积功的封闭系统。
利用上述基本关系式的积分,可以求得一个封闭系统经历一个任意可逆过程后状态函数的变化。对于只由两个独立变量便可描述的封闭系统(即没有不可逆的化学变化和相变化的封闭系统),上述基本关系式实际上可看作状态函数U、H、A和G的全微分表达式。无论过程是否可逆,它们的积分都存在,且只由系统的始、终态决定。因此,对这样的系统,不可逆过程的状态函数的变化,也可由上述基本关系式积分求得。
利用封闭系统的热力学基本关系式,还可以推导出许多重要的关系式。例如,从式(1)~(4)可导出:
T=(дU/дS)V=(дH/дS)p (5)
p=-(дU/дV)S=-(дA/дV)T (6)
V=(дH/дp)S=(дG/дp)T (7)
S=-(дA/дT)V=-(дG/дT)p (8)
利用数学上的全微分性质,还可由式(1)~(4)导出:
(дT/дV)S=-(дp/дS)V (9)
(дT/дp)S=(дV/дS)p (10)
(дS/дV)T=(дp/дT)V (11)
(дS/дp)T=-(дV/дT)p (12)式(9)~(12)称为麦克斯韦关系式组。利用此关系式,可把一些实验上难以测量的量〔如(дS/дp)T〕转化为易于测量的量〔如(дV/дT)p〕。
利用麦克斯韦关系式,可从式(1)和(2)导出:
(дU/дV)T=T(дp/дT)V-p (13)
(дH/дp)T=-T(дV/дT)p+V (14) 式(13)、(14)描述了系统的内能U和焓H随系统的体积和压力的变化关系,通常称为热力学状态方程。
对化学组成可变的均相系统,式(1)~(4)可改写为:
(15)
(16)
(17)
(18)
式(15)~(18)称为开放系统的热力学函数基本关系式。式中μB为系统中物质B的化学势;dnB为物质B的物质的量的微小变化值。
如果系统在变化过程中除体积功和化学功外还有其他功(如电、磁、表面功等),则热力学函数基本关系式的形式为
(19)
(20)
(21)
(22)
式中W ′为除体积功以外的其他功。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条