说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正弦跳跃函数
1)  sinusoidal jump function
正弦跳跃函数
2)  jump function
跳跃函数
3)  Bouncing Function
跳跃度函数
1.
In this paper, a method based on the Bouncing Function is proposed for discerning and calculating the outliers, which resulted in the irregular change.
为此,该文提出采用跳跃度函数的方法,对系统中所出现的引起事故发生率发生变化的异常数据进行分析和计算,在进行理论证明的基础上给出了跳跃度函数的计算公式,并以线路故障率为例,说明文中的方法对电力系统偶然事故选择所产生的影响。
4)  pure jump function
纯跳跃函数
5)  sine function
正弦函数
1.
The Development of the Courseware of Applying Visual Basic Language to Simulating "Drawing Image of Sine Function with Sine Line";
利用Visual Basic语言模拟“用正弦线作正弦函数图象”的课件开发
2.
Draw Sine Function Image with Computer;
计算机绘制正弦函数图象
3.
On some identities of sine and cosine functions;
关于正弦函数和余弦函数的一些恒等式
6)  sinusoidal function
正弦函数
1.
The numerical expression of trigonometric function and its approximate expression are discussed in detail,a kind of analog electric circuit for sinusoidal function is designed using analog multiplier/divider,and the direct analog circuits for the computation of the attitude parameters with negative feedback are also presented.
根据旋转导向钻井工具姿态参数的求解需要,结合Taylor中值定理,提出一种模拟解算方法,分析了三角函数的展开式及其逼近表达式,并应用模拟乘法/除法器和负反馈电路设计了正弦函数拟合求解和姿态参数角直接解算电路。
2.
This paper presents a new model of chaotic neural network whose activation func- tion is composite of Sinusoidal function and Sigmoid function by analyzing the bifurcation process and Lyapunov exponent spectrum.
通过复合正弦函数和Sigmoid函数构成激励函数,构造了一种新的暂态混沌神经网络。
补充资料:正弦


正弦
sine

  正弦[菌.班;c““yc」 三角函数(trJ即nometxic彻犯tions)之一: 夕二Sm无定义域是整个实轴,值域是区间【一l,1].正弦是奇周期函数(周期为2幻.在正弦和余弦(cos流)之间存在公式 sin Zx+cos Zx二1.在正弦和余割(c%eca幻t)之间存在公式 l SlllX=— COSeCX正弦的导数是 (sinx)‘=c挑x.正弦的不定积分是 了sin二J二一。os二十。.正弦的幂级数展开是 x 3 .xs sm戈“工一亩+丁一“’,一田<“<羌正弦的反函数是反正弦(往戊s比). 在复自变量z的正弦、余弦和指数函数之间存在Euhr公式(Eular fonn山a): e‘;“eos艺+1 sin二, e,乙一e一,z sm:一万万-’井且如果:“ix是纯虚数,则 sinx二一sinhx,其中sinhx是双曲正弦.10,A.r叩砍帕撰[补注]当然,sinx也可由E川er公式或幂级数来定义.一个直观定义如下所述.考虑一个单位圆,其中心在直角坐标系的原点O,以及一个旋转半径OP.设x是口月和口尸之间的夹角(取反时针方向为正),P’是尸在OA上的投影.这时,sinx定义为比(pP‘)/(OP),eosx定义为(OP‘)/(Op),tanx定义为(PP‘)/(01〕‘).{ 另一个(解析的)方法是从定义在闭区Iblt一1,11上的函数,(、)出发,,(、)一丁;山/V飞二了·当x=土l时,这个积分是反常的,但是收敛.不难看出,中(x)在闭区间[一1,l]上是单调增加的和连续的,在开区间(一1,l)上是可微的,并且在卜耐2,二/2J上取值.因此,它具有在〔一九/2,二/2J上定义、在[一1,11中取值的反函数.这个反函数称为sinx,并且可以证明它的定义域可以延拓到整个实轴.函数甲(、)称为反正弦(暇ine). sinx的图形是正弦曲线(s山usoid)(亦见三角函数(trlgo加服tr沁functions)).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条