1) logarithmically convex
对数性凸的
2) logarithmical convexity
对数凸性
1.
The ordinary convexity,geometrical convexity,logarithmical convexity and the exponential convexity are mentioned in the first two sections;the ideal convexity,integral convexity and the β-convextiy are presented in the central three sections;for the more generalized convexties are briefly introduced in the last section.
本文第一节简述通常凸性概念及其在不等式理论方面的几个简单应用,第二节简介几何凸性、对数凸性、指数凸性及其与通常凸性之间的相互关系;第三节介绍集合与函数的理想凸性;第四节简介由笔者首创的积分凸性及其进展。
3) logarithmic convexity
对数凸性
1.
If the class of admissible solutions is suitably restricted,an explicit inequlity depending solely on data will be derived by logarithmic convexity method.
当对方程的解进行适当限制后,可以利用对数凸性的方法导出仅依赖于初始数据的连续依赖性的不等式,推出它的H lder稳定性,从而得到问题解的连续依赖性。
4) log-convexity
对数凸性
1.
We also give a new proof of log-convexity and log-concavity of some sequences through the calculations of Hankel determinants.
本文用连分式法证明了Barry提出的几类序列Hankel变换的猜想,同时通过Hankel行列式的计算,给出一些组合序列对数凸性和对数凹性新的证明。
5) logarithmatical
对数性凸函数
1.
In this paper,the author gives some properties of logarithmatical convex function by using the fundental properties and decision theorem of convex function.
文章类比凸函数的基本性质及判定定理,并利用对数性凸函数的定义,引入判别准则,得出了一些对数性凸函数的相关性质。
补充资料:对数凸性
对数凸性
convex! t>.logarithmic
对数凸性(伽ve劝ty,l呢arithmic;.b.叩目阅‘.‘JJa.叫.M“-,恻翻〕 定义在区间上非负函数了的下述性质:若对j一区间中任意两点.、.与x,以及满足p十pZ二!的丁r意数P)O,P:>O,不等式 加!x,+p之x之)嘱、尸‘(x,)尸2(一、:)成立,则称.厂为对攀0妙门卿rithmlolls onVe、)瑕如一个函数是对数凸的,那么它或者恒等于0或者是严格正的且Inf为凸函数(实变量的)(eonVex几,netion(of a real variable)).几』飞Ky叩,l,x爬B撰卜斯宙译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条